(x+5)^3 > 8 .Можем извлечь из 3 степени ,т.к. степень нечетная и знак не поменяет ,тогда x+5 > 2 , x > -3
ответ : x∈ (-3;+∞)
2) (3x - 5 ) ^ 7 < 1. Можем извлечь из 7 степени ,т.к. степень нечетная и знак не поменяет ,тогда 3x- 5 < 1 ; 3x < 6 ; x<2
ответ : x∈ (-∞;2)
3) (4 - x)^4 > 81 . т.к. степень четная ,то при извлечении из 4 степени ,нужно добавить модуль ,т.е. |4-x| > 3 . Разобьем на две системы неравенств : .Решение первого неравенства (-∞;1) ,а второго (7;+∞) . Объединяя получаем ,что x∈(-∞;1) V (7;+∞)
ответ: x∈(-∞;1) V (7;+∞)
1. Если два числа не имеют никаких общих делителей, кроме 1, то они взаимно простые.
Возьмем к примеру 3 и 5
У них НОД 1
Значит утверждение неверное
2. Все составные числа – это произведение 2-х натуральных чисел, которые больше единицы.
К примеру, число 4 = 2*2
А у простого числа только два множителя - это единица и само это число.
К примеру, 3 = 1*3
Сравним 3 и 4
У них НОД 1
Значит могут и утверждение верное
3. Смотрим пункт 1 и видим, что могут, значит верное
4. Не все являются взаимно простыми.
К примеру 5 и 25 имеют НОД = 5
Утверждение неверное
Sn = (a1 + an)/2 * n; an = a1 + d*(n - 1)
S8 = (a1 + a8)/2 * 8 = 4*(a1 + a8) = 4*(2a1 + 7d)
a1 = 5
a5 = a1 + 4d
a1 + 4d = -7
5 + 4d = -7
4d = -12
d = -3
S8 = 4*(2*5 + 7*(-3)) = 4*(10 - 21) = 4*(-11) = -44