ответ: x₁ = 3; x₂ = 5.
Скажите, это ведь очень напоминает пропорцию, если к числу x приписать знаменатель 1? (Мне так кажется).
Воспользуемся правилом:
Произведение крайних членов пропорции равно произведению средних.
Получаем:
1 * (6x - 15) = x * (x - 2)
6x - 15 = x² - 2x
Теперь у нас есть обычное квадратное уравнение, которое нужно решить:
x² - 8x + 15 = 0.
Тут отлично сработает теорема Виета (дискриминантом решать как-то лень):
Сумма корней квадратного уравнения (ax² + bx + c = 0), при а = 1, равна третьему коэффициенту, а сумма - второму с противоположным знаком.
Тогда: 3 * 5 = 15, 3 + 5 = 8.
Проверим только ОДЗ: x - 2 ≠ 0 ⇒ x ≠ 2. Все нормально.
Вот мы и получили ответ: x₁ = 3; x₂ = 5.
ответ: x₁ = 3; x₂ = 5.
Скажите, это ведь очень напоминает пропорцию, если к числу x приписать знаменатель 1? (Мне так кажется).
Воспользуемся правилом:
Произведение крайних членов пропорции равно произведению средних.
Получаем:
1 * (6x - 15) = x * (x - 2)
6x - 15 = x² - 2x
Теперь у нас есть обычное квадратное уравнение, которое нужно решить:
x² - 8x + 15 = 0.
Тут отлично сработает теорема Виета (дискриминантом решать как-то лень):
Сумма корней квадратного уравнения (ax² + bx + c = 0), при а = 1, равна третьему коэффициенту, а сумма - второму с противоположным знаком.
Тогда: 3 * 5 = 15, 3 + 5 = 8.
Проверим только ОДЗ: x - 2 ≠ 0 ⇒ x ≠ 2. Все нормально.
Вот мы и получили ответ: x₁ = 3; x₂ = 5.
Первые трое человек точно лжецы: левее них меньше трёх человек, и среди них не может быть хотя бы на три лжеца больше.
Рассмотрим последнего человека. Правее него нет ни одного человека, левее – не меньше трёх лжецов. Значит, он рыцарь.
Аналогично для второго, третьего и т.д. человека: правее них ни одного лжеца, левее – не менее трёх. В конце концов получится, что в ряду стоят 7 рыцарей: