М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
darisha0003
darisha0003
16.02.2021 00:21 •  Математика

Укого-то было 12 сладостей 2/3 из них он съел сколько сложности осталось у кайрата

👇
Ответ:
nikolaivanov11
nikolaivanov11
16.02.2021
1)12 \times \frac{2}{3} = \frac{12 \times 2}{3} = 4 \times 2 = 8 \\ \\ 2)12 - 8 = 4
8 сладостей сьел;
4 сладостей осталось;
4,6(5 оценок)
Ответ:
Lizavladimir07
Lizavladimir07
16.02.2021

12:3*2=8он съел
12-8=4 осталось сладостей

4,6(82 оценок)
Открыть все ответы
Ответ:
lerailina30040
lerailina30040
16.02.2021
Вероятностью события называют отношение числа элементарных исходов испытания, благоприятствующих наступлению события, к числу всех возможных элементарных исходов испытания. Исходя из условий задачи, вероятность того, что Муми-тролль будет чувствовать себя совершенно счастливым, составляет 1/3 - математически: общее число исходов =3 дня, число благоприятных исходов (достаточно солнечный день) =1 день, а вот для Хемуля вероятность совершенно счастливого дня — 1/4, так как для него общее число исходов =4 дня, число благоприятных исходов (достаточно солнечный день) =1 день. Тогда, в силу теоремы сложения вероятностей, вероятность того, что в случайно выбранный день хотя бы один из них будет совершенно счастлив, составляет 1/3 + 1/4 = 7/12 ≈ 0,583
4,5(72 оценок)
Ответ:
sonya19970
sonya19970
16.02.2021
Вероятностью события называют отношение числа элементарных исходов испытания, благоприятствующих наступлению события, к числу всех возможных элементарных исходов испытания.
     Исходя из условий задачи, вероятность того, что Муми-тролль будет чувствовать себя совершенно счастливым, составляет 1/3 - математически: общее число исходов =3 дня, число благоприятных исходов (достаточно солнечный день) =1 день, а вот для Хемуля вероятность совершенно счастливого дня — 1/4, так как для него общее число исходов =4 дня, число благоприятных исходов (достаточно солнечный день) =1 день.
     Тогда, в силу теоремы сложения вероятностей, вероятность того, что в случайно выбранный день хотя бы один из них будет совершенно счастлив, составляет 1/3 + 1/4 = 7/12 ≈ 0,583
4,5(77 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ