Решение:подразумеваем, что каждую из цифр можно брать лишь по одному разу количевство возможных двузначных чисел 4*4=16, (первая цифра одна из четырех, кроме 0, вторая одна из четырех оставшихся) четное число окончивается на 0, 2, 4 таких чисел будет 4+3+3=10 (на первое место любая цифра, кроме 0 из данных, вторая задается) вероятность 10\16=5\8 нечетных чисел юбудет 16-10=6 вероятность 6\16=3\8 делится на 5, если последняя цифра будет 0, таких чисел 4, значит вероятность 4\16=1\4 делится на 4таких чисел будет пять 12,20,24,32,40, значит вероятность 5\16
Если рядом сидят два химика, то правый скажет правду: НЕТ. Если рядом сидят два алхимика, то правый соврет: НЕТ. Таким, образом, ответ НЕТ возникает в том случае, если рядом сидят два одинаковых человека: два химика или два алхимика. Допустим, у нас n химиков. Тогда ряд из (n+1) рядом сидящих алхимиков дает n ответов НЕТ. Ряд надо составлять из алхимиков, чтобы химиков получилось минимальное, а не максимальное количество. Пусть все химики сидят через одного с алхимиками. ХАА...АХАХА...ХА Разобьем их на пары (ХА)А...А(ХА)(ХА)...(ХА) Здесь n А подряд и n пар ХА. Всего n + n А и n Х. n + n + n = 160 3n = 160 Но 160 не делится на 3, поэтому такого не может быть. Значит, есть хотя бы одна пара Х подряд. (ХА)(ХХ)А...А(ХА)(ХА)...(ХА) Здесь 2 химика, еще (n-2) пары ХА и ряд из n А. Химиков по-прежнему n, а алхимиков n + (n-2) n + n - 2 + n = 160 3n - 2 = 160. 3n = 162 n = 54
P = 4a
По условию:
a = P - 6
a = 4a - 6
3a = 6
a = 2 (м) -- сторона квадрата
ответ: 2 м.