М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
лёванчик228
лёванчик228
27.10.2020 08:05 •  Математика

Реши примеры 7.684: (999.595+36+369-96.164+6)*52= №7*54-41.536: 944+26*2.572. по действиям.)

👇
Ответ:
alyastoun00
alyastoun00
27.10.2020

  7 684 : (99 595 + 36 + 369 - 96 164 + 6) * 52

1) 99 585 + 36 = 99 631 

2) 99 631 + 369 = 100 000

3) 100 000 - 96 164 = 3 836

4) 3 836 +6 = 3 842

5) 7 684 : 3 842 = 2

6) 2 * 52 = 104

  ответ: 104

  14 056 - (42 103 + 14) : 3 + (18 710 - 18 708) · 45

1) 42 103 + 14 = 42 117

2) 18 710 - 18 708 = 2

3) 42 117 : 3 = 14 039

4) 2 * 45 = 90

5) 14 056 - 14 039 = 17

6) 17 + 90 = 107 

  ответ: 107

  81 + 46 028 - (35 450 - 5 · 25) : 225 · 293

1) 25 * 5 = 125

2) 35 450 - 125 = 35 325

3) 35 325 : 225 = 157

4) 157 * 293 = 46 001

5) 81 + 46 028 = 46 109

6) 46 109 - 46 001 = 108

  ответ: 108

4,6(42 оценок)
Открыть все ответы
Ответ:
viktoriya2000ok
viktoriya2000ok
27.10.2020

Будем разбивать на несколько случаев.

1) Если из первой урны взяли 4 чёрных шара. Вероятность достать четыре чёрных шара равна \dfrac{5}{11}\cdot \dfrac{4}{10}\cdot \dfrac{3}{9}\cdot\dfrac{2}{8}=\dfrac{1}{66}. Тогда во второй урне будет 3 белых и 9 черных шаров. Вероятность того, что среди трех отобранных шаров  из второй урны окажутся все белые равна \dfrac{3}{12}\cdot\dfrac{2}{11}\cdot\dfrac{1}{10}=\dfrac{1}{220}. По теореме умножения P_1=\dfrac{1}{66}\cdot\dfrac{1}{220}

2) Если из первой урны взяли 1 белый шар и 3 чёрных. Вероятность такого события равна \dfrac{C^1_6\cdot C^3_5}{C^4_{11}}=\dfrac{6\cdot10}{330}=\dfrac{2}{11}. Тогда во второй урне будет 4 белых и 8 черных шаров. Вероятность того, что среди отобранных шаров из второй урны все белые равна \dfrac{4}{12}\cdot\dfrac{3}{11}\cdot\dfrac{2}{10}=\dfrac{1}{55}. По теореме умножения: P_2=\dfrac{2}{11}\cdot\dfrac{1}{55}

3) Из первой урны взяли 2 белых шара и 2 чёрных. Вероятность такого события: \dfrac{C^2_6\cdot C^2_5}{C^4_{11}}=\dfrac{15\cdot10}{330}=\dfrac{15}{33}. Во второй урне будет 5 белых и 7 черных шаров. Вероятность того, что среди отобранных 3 шаров из второй урны все окажутся белыми равна \dfrac{5}{12}\cdot\dfrac{4}{11}\cdot\dfrac{3}{10}=\dfrac{1}{22}. По теореме умножения : P_3=\dfrac{15}{33}\cdot\dfrac{1}{22}

4) Из первой урны взяли 3 белых шара и 1 чёрный шар. Вероятность достать 3 белых шара и 1 чёрный шар равна \dfrac{C^3_6\cdot C^1_5}{C^4_{11}}=\dfrac{20\cdot5}{330}=\dfrac{10}{33}. Во второй урне останется 6 белых и 6 чёрных шаров. Вероятность того, что среди отобранных шаров из второй урны окажутся все белыми равна \dfrac{6}{12}\cdot\dfrac{5}{11}\cdot\dfrac{4}{10}=\dfrac{1}{11}. По теореме умножения: P_4=\dfrac{10}{33}\cdot\dfrac{1}{11}

5) И, наконец, когда из первой урны урны взяли все четыре белых шаров. Вероятность такого события: \dfrac{6}{11}\cdot\dfrac{5}{10}\cdot\dfrac{4}{9}\cdot\dfrac{3}{8}=\dfrac{1}{22}. Во второй урне остается 7 белых и 5 черных шаров. Вероятность того, что среди отобранных 3 шаров из второй урны окажутся все белыми равна \dfrac{7}{12}\cdot\dfrac{6}{11}\cdot\dfrac{5}{10}=\dfrac{7}{44}. По теореме умножения: P_5=\dfrac{1}{22}\cdot\dfrac{7}{44}

Итого, по теореме сложения:

P=P_1+P_2+P_3+P_4+P_5=\dfrac{1}{66}\cdot\dfrac{1}{220}+\dfrac{2}{11}\cdot\dfrac{1}{55}+\dfrac{15}{33}\cdot\dfrac{1}{22}+\\ \\ +\dfrac{10}{33}\cdot\dfrac{1}{11}+\dfrac{1}{22}\cdot\dfrac{7}{44}=\dfrac{427}{7260}\approx 0{,}0588

4,6(39 оценок)
Ответ:

Будем разбивать на несколько случаев.

1) Если из первой урны взяли 4 чёрных шара. Вероятность достать четыре чёрных шара равна \dfrac{5}{11}\cdot \dfrac{4}{10}\cdot \dfrac{3}{9}\cdot\dfrac{2}{8}=\dfrac{1}{66}. Тогда во второй урне будет 3 белых и 9 черных шаров. Вероятность того, что среди трех отобранных шаров  из второй урны окажутся все белые равна \dfrac{3}{12}\cdot\dfrac{2}{11}\cdot\dfrac{1}{10}=\dfrac{1}{220}. По теореме умножения P_1=\dfrac{1}{66}\cdot\dfrac{1}{220}

2) Если из первой урны взяли 1 белый шар и 3 чёрных. Вероятность такого события равна \dfrac{C^1_6\cdot C^3_5}{C^4_{11}}=\dfrac{6\cdot10}{330}=\dfrac{2}{11}. Тогда во второй урне будет 4 белых и 8 черных шаров. Вероятность того, что среди отобранных шаров из второй урны все белые равна \dfrac{4}{12}\cdot\dfrac{3}{11}\cdot\dfrac{2}{10}=\dfrac{1}{55}. По теореме умножения: P_2=\dfrac{2}{11}\cdot\dfrac{1}{55}

3) Из первой урны взяли 2 белых шара и 2 чёрных. Вероятность такого события: \dfrac{C^2_6\cdot C^2_5}{C^4_{11}}=\dfrac{15\cdot10}{330}=\dfrac{15}{33}. Во второй урне будет 5 белых и 7 черных шаров. Вероятность того, что среди отобранных 3 шаров из второй урны все окажутся белыми равна \dfrac{5}{12}\cdot\dfrac{4}{11}\cdot\dfrac{3}{10}=\dfrac{1}{22}. По теореме умножения : P_3=\dfrac{15}{33}\cdot\dfrac{1}{22}

4) Из первой урны взяли 3 белых шара и 1 чёрный шар. Вероятность достать 3 белых шара и 1 чёрный шар равна \dfrac{C^3_6\cdot C^1_5}{C^4_{11}}=\dfrac{20\cdot5}{330}=\dfrac{10}{33}. Во второй урне останется 6 белых и 6 чёрных шаров. Вероятность того, что среди отобранных шаров из второй урны окажутся все белыми равна \dfrac{6}{12}\cdot\dfrac{5}{11}\cdot\dfrac{4}{10}=\dfrac{1}{11}. По теореме умножения: P_4=\dfrac{10}{33}\cdot\dfrac{1}{11}

5) И, наконец, когда из первой урны урны взяли все четыре белых шаров. Вероятность такого события: \dfrac{6}{11}\cdot\dfrac{5}{10}\cdot\dfrac{4}{9}\cdot\dfrac{3}{8}=\dfrac{1}{22}. Во второй урне остается 7 белых и 5 черных шаров. Вероятность того, что среди отобранных 3 шаров из второй урны окажутся все белыми равна \dfrac{7}{12}\cdot\dfrac{6}{11}\cdot\dfrac{5}{10}=\dfrac{7}{44}. По теореме умножения: P_5=\dfrac{1}{22}\cdot\dfrac{7}{44}

Итого, по теореме сложения:

P=P_1+P_2+P_3+P_4+P_5=\dfrac{1}{66}\cdot\dfrac{1}{220}+\dfrac{2}{11}\cdot\dfrac{1}{55}+\dfrac{15}{33}\cdot\dfrac{1}{22}+\\ \\ +\dfrac{10}{33}\cdot\dfrac{1}{11}+\dfrac{1}{22}\cdot\dfrac{7}{44}=\dfrac{427}{7260}\approx 0{,}0588

4,6(20 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ