М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

Врач ахмет дежурит каждые 8 дней, а врач самат- каждые 12 дней. после первого дежурства вместе сколько дней они будут дежурить в течение 50 дней

👇
Ответ:

строим график Ахмета - 8,16,24,32,40,48

строим график Самата - 12,24,36,48

Подчёркиваем совпадения, это и будет нашим ответом - 24,48.

ответ: 2 раза они будут вместе дежурить

4,6(99 оценок)
Открыть все ответы
Ответ:
Vadim55554
Vadim55554
09.02.2023

\displaystyle x=-1\\x=\frac14(1-i\sqrt3-\sqrt{2(-9-i\sqrt3})\\x=\frac14(1-i\sqrt3+\sqrt{2(-9-i\sqrt3})\\x=\frac14(1+i\sqrt3-\sqrt{2(-9+i\sqrt3})\\x=\frac14(1+i\sqrt3+\sqrt{2(-9+i\sqrt3})

Пошаговое объяснение:

x^5+2x^3+2x^2+1

Подставим вместо х -1. Тогда получим

(-1)^5+2(-1)^3+2(-1)^2+1=-1-2+2+1=0

Тогда х = -1 корень данного многочлена. Тогда этот многочлен можно представить в виде (x+1)Q^4(x), где Q - многочлен 4 степени. Найдём Q

Так как многочлен симметричный, то и Q будет симметричным. (это верно потому, что при раскрытии скобок данный многочлен будет иметь одинаковые коэффициенты везде, где у исходного были одинаковые коэффициенты)

Q(x)=x^4+ax^3+bx^2+ax+1 (симметричный многочлен)

Умножим его на (x+1) и найдем a и b

a=-1\\b=3

Тогда

Q(x)=x^4-x^3+3x^2-x+1

Тогда, чтобы найти корни многочлена x^5+2x^3+2x^2+1 нужно найти корни (x-1)(x^4-x^3+3x^2-x+1), т.е. решить уравнение

(x-1)(x^4-x^3+3x^2-x+1)=0

Тогда или х = - 1 или x^4-x^3+3x^2-x+1=0

Решим это уравнение

x^4-x^3+3x^2-x+1=0

так как х=0 не корень, то мы можем поделить на x² обе части уравнения

\displaystyle x^2-x+3-\frac1x+\frac1{x^2}=0

Тогда сделаем замену

\displaystyle t=x+\frac1x

Тогда

t^2-2=\displaystyle (x+\frac1x)^2-2=x^2+2+\frac1{x^2}-2=x^2+\frac1{x^2}

Преобразуем исходный многочлен

\displaystyle x^2-x+3-\frac1x+\frac1{x^2}=0\\(x^2+\frac1{x^2})-(x+\frac1x)+3=0\\(t^2-2)-t+3=0\\t^2-t+1=0\\t=\frac{1\pm\sqrt{1-4*1*1}}{2}\\t=\frac{1\pm\sqrt{-3}}{2}\\t=\frac12\pm i\frac12\sqrt3

Тогда сделаем обратную замену и решим для всех вариантов для t

\displaystyle t=\frac12\pm i\frac12\sqrt3\\x+\frac1x=\frac12\pm i\frac12\sqrt3\\x^2+1=(\frac12\pm i\frac12\sqrt3)x\\x^2-(\frac12\pm i\frac12\sqrt3)x+1=0\\x=\frac{(\frac12\pm i\frac12\sqrt3)\pm\sqrt{(\frac12\pm i\frac12\sqrt3)^2-4*1*1}}{2}\\

Тогда есть 2 варианта:

1)

 \displaystyle x=\frac14\pm i\frac14\sqrt3\pm\sqrt{\frac{-\frac121-\frac12i\sqrt3}{4}-1}

2)

\displaystyle x=\frac14\pm i\frac14\sqrt3\pm\sqrt{\frac{-\frac121+\frac12i\sqrt3}{4}-1}

Тогда корни нашего исходного многочлена это

\displaystyle x=-1\\x=\frac14(1-i\sqrt3-\sqrt{2(-9-i\sqrt3})\\x=\frac14(1-i\sqrt3+\sqrt{2(-9-i\sqrt3})\\x=\frac14(1+i\sqrt3-\sqrt{2(-9+i\sqrt3})\\x=\frac14(1+i\sqrt3+\sqrt{2(-9+i\sqrt3})

4,6(32 оценок)
Ответ:
ответ:

1)а=2³×3×5 и b=2×3×5²

b=2×3×5×5

а=2×2×2×3×5

НОК(а;b)=2×3×5×5×2×2=600

2)с=2⁴×3²и d=2²×3²×⁵

d=2×2×3×3×5

с=2 × 2 x 2 x 2 x 3 x 3

НОК(с;d)=2 x 2 x 3 x 3 x 5 x 2 x 2 =720

3)е=2³×3×7 и f=2²×3²×7

f=2 x 2 x 3 x 3 x 7

е=2 x 2 x 2 x 3 x 7

НОК(е;f)=2 x 2 x 3 x 3 x 7 x 2=504

4)m=2²×3² и n=3³×5

m= 2 x 2 x 3 x 3 x 3

n=3 x 3 x 3 x 5

НОК(m;n)=2 умножить на 2 x 3 X 3 x 3 x 5

5)р=3×3²×11 и t=2³×3×11

t=2 х 2 х 2 х 3 х 11

р=2 х 3 х 3 х 11

НОК(р;t)=2 х 2 х 2 х 3 х 11 х 3 = 792

6)х=2⁴×3×5 и у=2²×3×5²

у=2 x 2 x 3 x 5 x 5

х=2 x 2 x 2 x 2 x 3 x 5

НОК(х;у)=2 умножить на 2 x2× 3 x 5 x 5 x 2 x 2=1200

объяснение:

разложим числа на простые множители.сначала запишем разложение на множители самого большого числа, затем меньшее число.чтобы определить НОК,необходимо недостающие множители добавить к множителем большего числа и перемножить их

4,8(97 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ