1) Допустим, он спросил у рыцаря. Рыцарь дал верный ответ: "Да. Среди нас хотя бы один - рыцарь". Но тут возникает неоднозначность, потому что второй может быть как рыцарем, так и лжецом, поскольку первый рыцарь, и уже выполняется условие, что среди них хоть кто-то рыцарь. 2) Допустим, он спросил у лжеца. Если лжец ответил: "Да, среди нас есть рыцарь", то среди них нет рыцаря. То есть второй - тоже лжец. Если лжец ответил: "Нет, среди нас нет рыцарей", то среди них есть рыцарь. Это второй островитянин. Если автор получил, что хотел, то ему подходит пункт 2. То есть первый лжец, а в зависимости от его ответа второй либо рыцарь, либо тоже лжец.
Но, возможно, это не всё решение задачи. Следует еще подумать над тем, а не являются ли эти островитяне единственными, кто населяет остров
Нам нужно выбирать из 25-элементного множества все трёхэлементные подмножества, которые не отличаются порядком следования элементов, а отличаются лишь составом.То, что на подмножества не должен влиять порядок следования элементов, говорит фраза о том, что выбирают трёх кандидатов. Кандидаты не отличаются друг от друга ничем ( среди них не выбирается главный кандидат , " подглавный" кандидат...),все равны в правах. Поэтому такие подмножества называются сочетаниями. Значит, надо найти количество трёхэлементных сочетаний из 25-элементного множества.
1.
4 * ∛8 + 5 * ⁵√-32 = 4 * 2 + 5 * (-2) = 8 - 10 = -2,
2.
∛125 * 0,064 = 5 * 0,064 = 0,32,
3.
(∛648) / (∛3) = ∛(648/3) = ∛216 = 6