М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
trofimka31
trofimka31
30.04.2023 16:51 •  Математика

На завтра нужно: доказать что существует натуральное число последние четыре цифры которого 1996 и кторое делится на 1997

👇
Ответ:
Danfdffefd
Danfdffefd
30.04.2023

Покажи и покажи  как есть

4,6(14 оценок)
Открыть все ответы
Ответ:

Пошаговое объяснение:

Пуговиц на красных пиджаках всего  в 2 раза меньше , чем на  зелёных,

так и количество пуговиц на одном красном  пиджаке тоже меньше в 2 раза

4\2 = 2 раза.

А это значит , что красных и зеленых пиджаков поровну.

А в среднем на каждый пиджак приходится по 3 пуговицы( кр и зел)

А у синих пиджаков по 3 пуговицы, значит их столько же , сколько всего красных и зеленых.

А это значит , что половина всех пиджаков - синие

36 \ 2 = 18 синих ,    

а остальные 18 - половина красные и половина зеленые

18 \ 2 = 9 красных и столько же зеленых \ 2

4,7(51 оценок)
Ответ:
DastyMilk
DastyMilk
30.04.2023

y = 9 + \pi \sqrt{3} - 3x\sqrt{3} - 6\cos x

x \in \bigg[0; \ \dfrac{\pi}{2} \bigg]

y' = (9 + \pi \sqrt{3} - 3x\sqrt{3} - 6\cos x)' = 3\sqrt{3} + 6\sin x

Найдем критические точки функции:

3\sqrt{3} + 6\sin x = 0\\\\6\sin x = 3\sqrt{3}\\\\\sin x = \dfrac{\sqrt{3}}{2} \\\\x = (-1)^{n} \arcsin \bigg(\dfrac{\sqrt{3}}{2} \bigg) + \pi n, \ n \in Z\\\\x = (-1)^{n} \cdot \dfrac{\pi}{3} + \pi n, \ n \in Z

Как видим, таких критических точек - множество. Определим некоторые из них, которые принадлежат отрезку \bigg[0; \ \dfrac{\pi}{2} \bigg]. Для этого будем брать всевозможные целые значения n:

Пусть n = 0. Тогда x = (-1)^{0} \cdot \dfrac{\pi}{3} + \pi \cdot 0 = \dfrac{\pi}{3} \in \bigg[0; \ \dfrac{\pi}{2} \bigg]

Пусть n = 1. Тогда x = (-1)^{1} \cdot \dfrac{\pi}{3} + \pi \cdot 1 = -\dfrac{\pi}{3} + \pi = \dfrac{2\pi}{3} \notin \bigg[0; \ \dfrac{\pi}{2} \bigg]

Только одно значение n, при котором данные критические точки входят в промежуток \bigg[0; \ \dfrac{\pi}{2} \bigg]

Итак, только на одном из трех вариантов: x = 0; \ x = \dfrac{\pi}{3}; \ x = \dfrac{\pi}{2} заданная функция может принимать наименьшее значение. Вычислим ее значение в этих трех точках, зная их абсциссы, и найдем наименьшее:

Если x = 0, то y = 9 + \pi \sqrt{3} - 3\cdot 0 \cdot \sqrt{3} - 6\cos 0 = 9 + \pi \sqrt{3} - 6 = 3 + \pi \sqrt{3}

Если x = \dfrac{\pi}{3}, то y = 9 + \pi \sqrt{3} - 3\cdot \dfrac{\pi}{3} \cdot \sqrt{3} - 6\cos \dfrac{\pi}{3} = 9 + \pi \sqrt{3} - \pi \sqrt{3} - 3 = 6

Если x = \dfrac{\pi}{2}, то y = 9 + \pi \sqrt{3} - 3\cdot \dfrac{\pi}{2} \cdot \sqrt{3} - 6\cos \dfrac{\pi}{2} = 9 + \pi \sqrt{3} - \dfrac{3\pi \sqrt{3}}{2} - 0 = 9 - \dfrac{\pi \sqrt{3}}{2}

Для того чтобы определить наименьшее из трех, можно подставить приблизительное значение числа \pi, а именно 3,14. Видим, что наименьшим значением функции является точка \bigg(\dfrac{\pi}{3} ; \ 6 \bigg)

ответ: \underset{[0; \frac{\pi}{2} ] }{\min y} = y\bigg(\dfrac{\pi}{3} \bigg) = 6\\

4,6(13 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ