1. Сечение шара - круг. Площадь круга: S = πr².
S₁ = πr₁² = 25π ⇒ r₁ = 5
S₂ = πr₂² = 144π ⇒ r₂ = 12
Отрезок, соединяющий центр шара с центром сечения, перпендикулярен сечению.
Обозначим ОС = х, тогда OS = 17 - х.
Из прямоугольных треугольников ОСА и OSB выразим радиус шара по теореме Пифагора:
R² = (17 - x)² + r₁² = (17 - x)² + 25
R² = x² + r₂² = x² + 144
(17 - x)² + 25 = x² + 144
289 - 34x + x² + 25 = x² + 144
34x = 170
x = 5
R = √(x² + 144) = √(25 + 144) = √169 = 13
Sпов. шара = 4πR² = 4 · π · 169 = 676π
2. Так как вершины квадрата лежат на сфере, то квадрат вписан в сечение сферы, в окружность, центр которой лежит в точке пересечения диагоналей квадрата.
Отрезок, соединяющий центр сферы с центром сечения, перпендикулярен сечению. Тогда SD - проекция наклонной OD на плоскость АВС, значит ∠SDO = 60° - угол между радиусом и плоскостью АВС.
OS - искомое расстояние.
BD = 12√2 как диагональ квадрата,
SD = 6√2.
Из прямоугольного треугольника SOD:
tg 60° = SO / SD
SO = SD · tg 60° = 6√2 · √3 = 6√6
3. Так как стороны треугольника касаются шара, то круг - сечение шара - вписан в треугольник.
Отрезок, соединяющий центр шара с центром сечения, перпендикулярен сечению.
OS = √2 - расстояние от центра шара до плоскости треугольника.
Полупериметр треугольника АВС:
p = (8 + 10 + 12)/2 = 15
По формуле Герона:
Sabc = √(p·(p - AB)·(p - BC)·(p - AC))
Sabc = √(15 · 7 · 5 · 3) = √(5 · 3 · 7 · 5 · 3) = 15√7
Sabc = p·r, где r = SK - радиус вписанной окружности.
p · SK = 15√7
SK = 15√7 / 15 = √7
Из прямоугольного треугольника SOK по теореме Пифагора:
ОК = √(SK² + OS²) = √(7 + 2) = √9 = 3
R = 3
4. Ядро - шар. Если его переплавили в конус, значит объем шара и конуса одинаков.
Пусть R = 1 - радиус шара, r - радиус конуса.
Vшара = 4/3 π R³ = 4/3π
Vконуса = 1/3 πr² · h = 4/3π, отсюда
r² · h = 4
Из прямоугольного треугольника, образованного высотой, радиусом основания и образующей конуса, по теореме Пифагора:
r² + h² = 6
Получили систему уравнений:
r² · h = 4
r² + h² = 6
r² = 6 - h²
(6 - h²) · h = 4 (2)
Решим второе:
6h - h³ = 4
h³ - 6h + 4 = 0
(h - 2)(h² + 2h - 2) = 0
h = 2
или
h² + 2h - 2 = 0
D/4 = 1 + 2 = 3
h = - 1 - √3 - не подходит по смыслу задачи, или
h = - 1 + √3 - не подходит по условию, так как высота не меньше 1.
ответ: h = 2
Пошаговое объяснение:
х^4 -а^4 +а^3 •х-ах^3 +с^3 •х-ас^3=
Решаем по действиям:
х^4 -а^4=(х-а)(х+а)(х^2 +а^2)
а^3 •х-ах^3=ах(а^2 -х^2)=ах(а-х)(а+х)=-ах(х-а)(х+а)
с^3 •х-ас^3=с^3(х-а)
Итог:
(х-а)(х+а)(х^2 +а^2)-ах(х-а)(х+а)+с^3(х-а)=(х-а)((х+а)(х^2 +а^2-ах)+с^3)=(х-а)(х^3 +а^3 +с^3)
а^3 -а^2 +х^3 -х^2 +а^2 х+ах^2=(a^3 +а^2 х)-(а^2 +х^2)+(х^3 +ах^2)=а^2(а+х)+х^2(а+х)-(а^2 +х^2)=(а+х)(а^2 +х^2)-(а^2 +х^2)=(а^2 +х^2)(а+х-1)
(х^3 +у^3)+(ху^2 +х^2 у)+(х^2 z+y^2 z)=(x+y)(x^2 -xy+y^2)+xy(x+y)+z(x^2 +y^2)=(x+y)(x^2 -xy+xy+y^2)+z(x^2 +y^2)=(x+y)(x^2 +y^2)+z(x^2 +y^2)=(x+y+z)(x^2 +y^2)
a^3 +a+ab^2 -a^2 b-b-b^3=(а^3 -a^2 b)+(a-b)+(ab^2 -b^3)
Решаем по действиям:
a^3 -a^2 b=a^2(a-b)
ab^2 -b^3=b^2(a-b)
Итог:
(a-b)(a^2 +1+b^2)
(3а^3 +12а^2)-(а+4)=3а^2 (а+4)-(а+4)=(3а^2 -1)(а+4)
(а^3 +а^2)+(а+1)=а^2(а+1)+(а+1)=(а^2 +1)(а+1)
(az^2 +az)-(bz^2 +bz)-(a-b)=az(z+1)-bz(z+1)-(a-b)=(z+1)(az-bz)-(a-b)=(z+1)z(a-b)-(a-b)=(a-b)(z+1)(z-1)=(a-b)(z^2 -1)
2 Следовать мерам безапасности
3 Окуратно не спеша следовать ближайшого выхода