М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
toptop54
toptop54
17.06.2020 21:43 •  Математика

Используя свойства умножения,найдите значение выражений 32х46-26х32= 44х18+12х44= 75х85-85х73= 19х42-17х42= 26х58-58х16= 121х21+79х121=

👇
Ответ:
prostochel4
prostochel4
17.06.2020

32x46-26x32 = 32x(46-26) = 32 x 20 = 640

44x18 +12x44 = 44x(18+12) = 44 x 30 = 1320

75x85-85x73 = 85 x (75-73) = 85 x 2 = 170

19x42-17x42 = 42 x (19-17) = 42 x 2 = 84

26x58-58x16 = 58 x (26-16) = 58 x 10 = 580

121x21+79x121 = 121 x (21+79) = 121 x 100 = 12100

4,8(75 оценок)
Открыть все ответы
Ответ:
Koul637
Koul637
17.06.2020
Снования призмы всегда параллельны, поэтому тангенс угла между плоскостями (А₁В₁С₁) и (ACP), который нужно найти, равен тангенсу угла между плоскостями (АВС) и (ACP), который будем искать.

Угол плоскостями (АВС) и (ACP) -- это ∠BQP, где BQ -- высота Δ АВС.

Высота BQ равнобедненного Δ АВС является ещё и медианой, поэтому АQ = АС/2 = 16/2 = 8.

По теореме Пифагора: BQ = \sqrt{AB^2-AQ^2}= \sqrt{10^2-8^2}=6.

По условию BP = BB₁/2 = 24/2 = 12.

tg∠BQP = BP/BQ = 12/6 = 2

Расстоянием от точки B до плоскости (APC) будет перпендикуляр BR.
BR = BQ*sin\ \textless \ BQP = BQ* \sqrt{1-cos^2\ \textless \ BQP}= =BQ* \sqrt{1- \frac{1}{1+tg^2\ \textless \ BQP}}=BQ* \sqrt{\frac{tg^2\ \textless \ BQP}{1+tg^2\ \textless \ BQP}}=BQ* \frac{tg\ \textless \ BQP}{\sqrt{1+tg^2\ \textless \ BQP}}==6*\frac{2}{\sqrt{1+2^2}}=\frac{12}{\sqrt5}=\frac{12\sqrt5}{5}.
Приложение
Основанием прямой треугольной призмы является равнобедренный треугольник с основанием 12,6 см,высото
4,8(51 оценок)
Ответ:
Лера1369999
Лера1369999
17.06.2020

Пошаговое объяснение:

основания призмы всегда параллельны, поэтому тангенс угла между плоскостями (А₁В₁С₁) и (ACP), который нужно найти, равен тангенсу угла между плоскостями (АВС) и (ACP), который будем искать.

Угол плоскостями (АВС) и (ACP) -- это ∠BQP, где BQ -- высота Δ АВС.

Высота BQ равнобедненного Δ АВС является ещё и медианой, поэтому АQ = АС/2 = 16/2 = 8.

По теореме Пифагора: BQ = \sqrt{AB^2-AQ^2}= \sqrt{10^2-8^2}=6.

По условию BP = BB₁/2 = 24/2 = 12.

tg∠BQP = BP/BQ = 12/6 = 2

Расстоянием от точки B до плоскости (APC) будет перпендикуляр BR.

BR = BQ*sin\ \textless \ BQP = BQ* \sqrt{1-cos^2\ \textless \ BQP}= =BQ* \sqrt{1- \frac{1}{1+tg^2\ \textless \ BQP}}=BQ* \sqrt{\frac{tg^2\ \textless \ BQP}{1+tg^2\ \textless \ BQP}}=BQ* \frac{tg\ \textless \ BQP}{\sqrt{1+tg^2\ \textless \ BQP}}==6*\frac{2}{\sqrt{1+2^2}}=\frac{12}{\sqrt5}=\frac{12\sqrt5}{5}.

4,6(18 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ