М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
максик88
максик88
29.06.2021 01:17 •  Математика

Даны вершины треугольника: а(-3,3) в(5,-7) с(7,7). найти угол между высотой и медианой, опущенными из вершины в

👇
Ответ:
Света202002
Света202002
29.06.2021

Рисунок к задаче в приложении.

ДУМАЕМ

1. нужны уравнения прямых BN - медианы и BH - высоты.

2. Медиана BN - нужны координаты точки N - середина АС.

3. Высота ВН - перпендикулярна прямой АС. Нужно уравнение прямой АС.

РЕШЕНИЕ

1) Nx = (Ax+Cx)/2 = 1  и 2) Ny = (Ay+Cy)/2 = -2 и точка N(1;-2).

2) k(BN) = (By-Cy)/(Bx-Cx) = 3/2 = 1.5 - наклон медианы

3) k(AC) = - 5/4 = - 1 1/4 - наклон стороны АС.

4) k(BH) = - 1/k(AC) = 4/5 - наклон высоты ВН

5) Угол по формуле tgα = (k2 - k1)/(1 + k1*k2)

k2 - k1 = 7/10,  

1+k1*k2 = 2 1/5

tgα = 7/22

arctg(7/22) = 0.308 рад = 17,65 град - ОТВЕТ



Даны вершины треугольника: а(-3,3) в(5,-7) с(7,7). найти угол между высотой и медианой, опущенными и
4,8(86 оценок)
Открыть все ответы
Ответ:
khursin03
khursin03
29.06.2021

Найдем сначала общее решение соответствующего однородного дифференциального уравнения

4y''+3y'-y=0

Пусть y=e^{kx}, мы получим характеристическое уравнение

4k^2+3k-1=0

k_1=-1\\ k_2=\frac{1}{4}

y_{o.o.}=C_1e^{-x}+C_2e^{\frac{x}{4}} — общее решение однородного диф. ур.

Найдём теперь частное решение. Рассмотрим функцию f(x)=5x^2+x

P_n(x)=5x^2+x отсюда n=2; \alpha =0. Сравнивая \alpha с корнями характеристического уравнения и, принимая во внимая, что \alpha =0, частное решение будем искать в виде:

\overline{y}=Ax^2+Bx+C\\ y'=2Ax+B\\ y''=2A

Подставляем в исходное дифференциальное уравнение

4\cdot 2A+3\cdot (2Ax+B)-(Ax^2+Bx+C)=5x^2+x\\ \\ 8A+6Ax+3B-Ax^2-Bx-C=5x^2+x\\ \\ -Ax^2+(6A-B)x+8A+3B-C=5x^2+x

Приравниваем коэффициенты при степени x

-A=5 откуда A=-5

6A-B=1 откуда B=-31

8A+3B-C=0 откуда C=-133

Частное решение: \overline{y}=-5x^2-31x-133

Общее решение линейного неоднородного дифференциального уравнения:

y=y_{o.o.}+\overline{y}=C_1e^{-x}+C_2e^{\frac{x}{4}}-5x^2-31x-133

4,4(71 оценок)
Ответ:
Саша12а
Саша12а
29.06.2021

Найдем сначала общее решение соответствующего однородного дифференциального уравнения

4y''+3y'-y=0

Пусть y=e^{kx}, мы получим характеристическое уравнение

4k^2+3k-1=0

k_1=-1\\ k_2=\frac{1}{4}

y_{o.o.}=C_1e^{-x}+C_2e^{\frac{x}{4}} — общее решение однородного диф. ур.

Найдём теперь частное решение. Рассмотрим функцию f(x)=5x^2+x

P_n(x)=5x^2+x отсюда n=2; \alpha =0. Сравнивая \alpha с корнями характеристического уравнения и, принимая во внимая, что \alpha =0, частное решение будем искать в виде:

\overline{y}=Ax^2+Bx+C\\ y'=2Ax+B\\ y''=2A

Подставляем в исходное дифференциальное уравнение

4\cdot 2A+3\cdot (2Ax+B)-(Ax^2+Bx+C)=5x^2+x\\ \\ 8A+6Ax+3B-Ax^2-Bx-C=5x^2+x\\ \\ -Ax^2+(6A-B)x+8A+3B-C=5x^2+x

Приравниваем коэффициенты при степени x

-A=5 откуда A=-5

6A-B=1 откуда B=-31

8A+3B-C=0 откуда C=-133

Частное решение: \overline{y}=-5x^2-31x-133

Общее решение линейного неоднородного дифференциального уравнения:

y=y_{o.o.}+\overline{y}=C_1e^{-x}+C_2e^{\frac{x}{4}}-5x^2-31x-133

4,7(94 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ