Найдем трехзначное число, кратное 24, сумма цифр которого также равна 24. Пусть искомое число abc, где а - число сотен, b - число десятков, а с - число единиц. По условиям задачи a+b+c=24, а также abc:24 без остатка. 24 можно представить как сумму трех чисел: 9+8+7 9+7+8 7+9+8 7+8+9 8+9+7 8+7+9 6+9+9 9+9+6 9+6+9 8+8+8 Число 24 можно представить как произведение чисел 3, 4 и 2, значит искомое трехзначное число должно быть кратным 2 (заканчиваться на 0 или четное число), 4 (последние две цифры должны делиться на 4) и 3 (сумма цифр числа кратна 3). Трем кратны все числа (т.к.сумма 24:3=6), а двум:
Из каждого уравнения получаем 2 урав. выражение под знаком | | может быть и положительным и отрицательным 2+х=4 2+х=-4 х=4-2 х=-4-2 х=2 х=-6 проверка |2+2|=4 |2+(-6)|=|-4|=4