1) Составить каноническое уравнение гиперболы, проходящей через данные точки А и В, если фокусы гиперболы расположены на оси абсцисс. А(4;-6), В(6;4√6)
Каноническое уравнение гиперболы имеет вид: . Подставим координаты известных точек:
2) Найти полуоси, фокусы, эксцентриситет и уравнения асимптот этой гиперболы.
a - действительная полуось, b - мнимая полуось гиперболы. Они уже найдены: a² = 4, а = +-2 b² = 3*4. b = +-2√3. c - фокусное расстояние. c = √(a² + b²) = √(4 + 12) = √16 = +-4. Координаты фокусов: F₁(-4;0), F₂(4;0). Точки A₁(-2;0) и A₂(2;0) (называются вершинами гиперболы, точка O – центром гиперболы. Эксцентриситет ε = c / a = 4 / 2 = 2 Асимптоты y = +-(b / a). y₁ = (2√3) / 2 = √3 y₂ = -(2√3) / 2 = -√3.
3) Найти все точки пересечения гиперболы с окружностью с центром в начале координат, если эта окружность проходит через фокусы гиперболы. Для этого надо решить систему уравнений гиперболы и окружности.
ответ: х = +-√7 у = +-3.
4) Построить гиперболу, ее асимптоты и окружность - смотри приложение (асимптоты не показаны - самому дополнить).
1) Уравнение геометрического места точек, отношение расстояний которых до данной точки A(9;0) и до данной прямой x=4.5 равно 3, имеет вид:
Возведём обе части уравнения в квадрат и приведём подобные.
8x²-y²-63x+101,25 = 0. Выделяем полные квадраты: 8(x²-2(63/16)x + (63/16)²) -8(63/16)² = 8(x-(63/16))²-(3969/32). Разделим все выражение на 729/32.
Данное уравнение определяет гиперболу с центром в точке: C((63/16); 0) и полуосями: a = (27/16); b = (27/(4√2). Найдем координаты ее фокусов: F1(-c;0) и F2(c;0), где c - половина расстояния между фокусами Определим параметр c: c² = a² + b2 = (729/256) + (729/32) = (6561/256), c = 81/16. Тогда эксцентриситет будет равен: ε = (81/16)/(27/16) = 81/27 = 3. Асимптотами гиперболы будут прямые: y+yo = +-(b/a)(x+xo). y₁ = (27/4√2)/(27/16)*x = 2√2*(x - (63/16)), y₂ = -2√2*(x - (63/16)). Директрисами гиперболы будут прямые: (х-хо) = +-(а/ε).
Для построения графика функции удобнее пользоваться уравнением функции, выражающим зависимость функции у от переменной х. Заданная гипербола имеет вид:
4см8мм= 48 мм
9дм4мм= 904мм
6м46см=6460 мм
3дм6см8мм =368 мм
53см =530 мм
3м5дм8мм=3508 мм
8а= 800 кв.м
5га=500 а
760000 кв.м= 76 га
2а65кв.м=265кв.м
7а=70000 кв.см
554кв.м=5а54 кв.м
6га= 60000 кв.м
4га77а=47700кв.м
364кв.м=3 а 64кв.м
7а=700кв.м
4га=400 а
650000кв.м=65га
9а=900кв.м
6а=60000кв.см
443кв.м =4а43кв.м
5га=500кв.м