ответ: y=4/cos(x).
Пошаговое объяснение:
Разделив обе части уравнения на y, получим уравнение dy/y=tg(x)*dx, или dy/y=sin(x)*dx/cos(x), или dy/y=-d[cos(x)]/cos(x). Интегрируя, находим ln/y/=-ln/cos(x)/+ln/C/, где C - произвольная, но не равная нулю постоянная. Отсюда общее решение уравнения y=C/cos(x). Используя условие y(0)=4, получаем уравнение 4=C/1, откуда C=4. Отсюда искомое частное решение уравнения y=4/cos(x). Проверка: y'=4*sin(x)/cos²(x), dy=4*sin(x)*dx/cos²(x), y*tg(x)*dx=4*sin(x)*dx/cos²(x), так что dy=y*tg(x)*dx - следовательно, найденное решение удовлетворяет дифференциальному уравнению. Полагая x=0, находим y=4/1=4, так что решение удовлетворяет и условию y(0)=4. Следовательно, решение найдено верно.
Пример №1
((-3c)×2,5)×(-4d) = 210
(-7,5с) × (-4d) = 210
30сd = 210
Подставляем cd=7
30×7 = 210
210 = 210 - равенство верно
Пример №2
1,5c×((-8d)×7) = -588
1,5с × (-56d) = -588
-84cd = -588
Подставляем cd=7
-84×7 = -588
-588 = -588 - равенство верно
Пример №3
(c×(-5))×0,4d) = -14
(-5с)×0,4d = -14
-2сd = -14
Подставляем cd=7
-2×7 = -14
-14 = -14 - равенство верно
Пример №4
((-0,3)×(-2))×(10d) = 42
0,6 × 10d = 42
6d = 42
d = 42/6 = 7
Если в примере пропущена с, то получаем
((-0,3с)×(-2))×(10d) = 42
0,6с × 10d = 42
6сd = 42
Подставляем cd=7
6×7 = 42 - равенство верно