6,4*10^23 кг, а её радиус равен 3,4 млн. кг. 1. определите гравитационную силу, действующеена тело массой 2 кг со стороны планеты 2)определите ускорение свободного подения на планете. 3) определите первую космическую скорость для данной планеты
Пусть t - количество дней, затраченное рабочим в сумме, а v - количество деталей, которое изготавливает рабочий за один день (по сути, это его скорость). Надо найти v.
Если бы он делал согласно своей норме и не болел, то за t дней он бы изготовил v*t = 560 деталей (по условию известно). Это первое уравнение, которое нам пригодится.
Далее, так как нам известно, что сначала рабочий делал детали 3 дня, затем 2 дня болел и потом работал столько, что успел в заданный срок (то есть за t дней), то количество дней, когда он работал сверх нормы (делал в день больше на 80 деталей), равно t-5. При этом его скорость была в эти дни равна v+80. За первые 3 дня он сделал v*3 деталей, а за все время он сделал 560 деталей. Нам все известно для того, чтобы составить второе уравнение: 3*v + (v+80)*(t-5) = 560. Решаем систему из двух уравнений, но сначала упростим второе: 3*v + v*t - 5*v + 80*t - 400 = 560 (вместо v*t подставим 560 в силу первого уравнения); 80*t - 2*v = 400; v = 40*t - 200. Выразим из первого уравнения скорость через время и подставим во второе уравнение: 560/t - 40*t +200 = 0. Домножим на t и решим квадратное уравнение, откуда найдём t: 40*t^2 - 200*t - 560 = 0; | : 40 t^2 - 5*t - 14 = 0; D = 5^2 + 4*1*14 = 25 + 56 = 81. Sqrt(D) = 9. Берём положительный корень, так как количество дней - неотрицательное число: t = (5+9)/2 = 7 дней. Из первого уравнения ищем v: v = 560/t = 560/7 = 80 деталей.
Дано
M=1.04*10^26 кг
R=2.22*10^7 м
G=6.67*10(-11) Нм^2/кг^2
Найти
g=?
Пошаговое объяснение:
Решение Из закона всемирного тяготения F=G*Mm/R^2 и формулы силы тяжести F=mg имеем g=G*M/R^2 g=6.67*10^(-11)* 1.04*10^26/(2.22*10^7)^2=14 м/с^2