1)Пирамида - многогранник, основание которого — многоугольник, а остальные грани - треугольники, имеющие общую вершину.
Площадь боковой поверхности правильной шестиугольной пирамиды формула:
, где a - сторона основания, b - боковая грань) 2) SK=10 — апофема, SH=8 — высота, НК — половина ребра основания. HK=√(SK2—HK2)=√(102—82)=6, Тогда ребро АВ=12. Площадь поверхности S=4⋅(SK⋅AB/2)+AB2=4⋅(10⋅12/2)+122=384
ответ: 384
Пошаговое объяснение:
1. Поток (подлежащ) бежит (сказуем)
Птичий гам (подлежащ) не молкнет (сказуем)
Словосочет: Поток проворный
2. Ветер (подлежащ) подул (сказуем)
Словосочет:Сильный ветер
3. Солнце (подлежащ) слепило ( сказуем)
Словосочет: Яркое солнце
4. Школьники (подлежащ) повесили (сказуем)
Словосочет:Высокий тополь
5. Воздух (подлежащ) чистый и прозрачный (сказуем)
Словосочет: - (нераспространенное предложение)
6. Ребята (подлежащ) строят (сказуем)
Словосочет: Снежную крепость
7. Туча (подлежащ) появилась ( сказуем)
Словосочет: Огромная туча
Пошаговое объяснение:
В двоичной системе счисления при записи числа используют всего две цифры: 0 и 1. Число «один» записывается, как обычно, 1, но число «два» составляет уже единицу второго разряда и поэтому записывается так: 10-2 «одна двойка и нуль единиц» (цифра 2, находящаяся внизу в конце записи числа, означает, что число записано в двоичной системе). Число «три» изображается: 11-2 «одна двойка и одна единица». Число «четыре» представляет собой единицу следующего, третьего разряда и поэтому записывается так: 100-2 «одна четверка, нуль двоек и нуль единиц». Таким образом, если в записи числа цифру 1 передвинуть влево на один разряд, то ее значение увеличивается вдвое (а не в десять раз, как в нашей десятичной системе). Сравните представление числа, запись которого состоит из четырех цифр 1, в виде суммы разрядных единиц в десятичной и двоичной системах: (тут все цифры, который через тире, вверху) 1111 = 1 • 1000 + 1 • 100 + 1 • 10 + 1 = 1 • 10-3 + 1 • 10-2 + 1 • 10 + 1; (а тут "1111-2" написано в двоичной системе исчисления) 1111-2 = 1 • 8 + 1• 4 + 1• 2 + 1 = 1• 2-3+1• 2-2 + 1• 2 + 1 = 15. Попробуйте записать в десятичной системе счисления числа, которые в двоичной системе пишутся так: 10-2; 100-2; 101-2; 110-2; 1110-2. Запишите в двоичной системе все натуральные числа от 1 до 15 включительно. Подумайте, почему двоичная система широко используется в вычислительной технике, но она неудобна в повседневной практике.