Відповідь:
1) 10•10 = 100 плиток образовали бы квадрат, если бы плиток хватило. Поскольку их не хватило, то плиток меньше 100.
2) В неполном ряду плиток при раскладывании по 8 не может быть 8 (это уже полный ряд), а в неполном ряду плиток при раскладывании по 9 не может быть 0 плиток (это значит, что нет неполного ряда), а это означает, что в неполном ряду плиток при раскладывании по 8 плиток может быть только 7, а в неполном ряду плиток при раскладывании по 9 может быть только 1 плитка. Разница как раз составляет 6 плиток, как указано в условии.
3) Представим себе, что есть n полных рядов плиток при раскладывании их по 8, и есть 7 плиток в неполном ряду. Можно перекладывать из неполного ряда по одной плитке к каждому ряду, так, что в каждом ряду образуется по 9 плиток. Так можно делать до тех пор, пока в неполном ряду не останется 1 плитка:
Получаем уравнение
8n + 7 = 9n + 1
9n - 8n = 7 - 1
n = 6 рядов по 8 или по 9 плиток.
4) 8n+7 = 8•6+7=47+7=55 плиток.
Или
9n+1 = 9•6+1=54+1=55 плиток.
ответ: 55 плиток.
Покрокове пояснення:
Найти объем треугольной пирамиды ABCD с вершинами A(2;-1;1), B(5;5;4), C(3;2;-1), D(4;1;3).
Решение находим с калькулятора.
Найти объем треугольной пирамиды ABCD с вершинами A(2;-1;1), B(5;5;4), C(3;2;-1), D(4;1;3).
Координаты векторов находим по формуле:
X = xj - xi; Y = yj - yi; Z = zj - zi
здесь X,Y,Z координаты вектора; xi, yi, zi - координаты точки Аi; xj, yj, zj - координаты точки Аj;
Например, для вектора AB
X = x2 - x1; Y = y2 - y1; Z = z2 - z1
X = 5-2; Y = 5-(-1); Z = 4-1
AB(3;6;3), AC(1;3;-2), AD(2;2;2), BC(-2;-3;-5), BD(-1;-4;-1), CD(1;-1;4).
Объем пирамиды, построенный на векторах a1(X1;Y1;Z1), a2(X2;Y2;Z2), a3(X3;Y3;Z3) равен:
Находим определитель матрицы: ∆ = 3 • (3 • 2-2 • (-2))-1 • (6 • 2-2 • 3)+2 • (6 • (-2)-3 • 3) = -18
(Если что это как пример так ты сможешь сделать это одно и тоже почти!)
y=961-159
y=802
ответ: 802.