2040
Пошаговое объяснение:
47с + 34 - 58 + 12с + 58
47*34-58+12*34+58
1598+34-58+408+58
1632-58+466
1574+466 = 2040
ответ: Чисел, которые кратны 8, но не кратны 9, больше, чем чисел, которые кратны 9, но не кратны 8.
Итак, нам нужно сравнить:
Числа, кратные 8, но не кратные 9.
Числа, кратные 9, но не кратные 8.
Давайте к каждой из этих групп чисел прибавим числа, которые кратны 8 и еще числа, кратные 9. Получим:
1. (Кратные 8 + не кратные 9) + (кратные 8 + кратные 9) = кратные 8 + кратные 8 = 2 * (кратные 8).
2. (Кратные 9 + не кратные 8) + (кратные 8 + кратные 9) = кратные 9 + кратные 9 = 2 * (кратные 9).
Теперь нам нужно сравнить удвоенное количество чисел, кратных 8, и удвоенное количество, чисел кратных 9. Можно поделить каждую из частей на 2.
Итак, каких чисел больше:
кратных 8;
или кратных 9?
Понятно, что чисел, кратных 8, все-таки больше, чем чисел, кратных 9, так как само число 8 меньше 9 и мы берем довольно большой промежуток чисел.
Возвратившись к исходной задаче, получаем:
Чисел, которые кратны 8, но не кратны 9, больше, чем чисел, которые кратны 9, но не кратны 8.
Задание 1.
0,(7) = 7/9;
0,8(5) = 77/90;
0,73(4) = 661/900;
8,342(3) = 8 1027/3000 .
Задание 2.
5/6 = 0,8(3);
9/11 = 0,(81).
Пошаговое объяснение:
Задание 1.
Периодическую дробь обратите в обыкновенную: 0, (7) ; 0,8(5); 0, 73(4); 8,342(3)
0,(7)
1) Количество цифр в периоде = 1.
2) Количество цифр после запятой, но до периода = 0.
3) Число из цифр после запятой, включая период, = 7.
4) Число после запятой, но до периода = 0.
5) Числитель искомой дроби = п. 3 - п. 4 = 7 - 0 = 7.
6) Знаменатель искомой дроби - число, которое составлено из такого количества девяток, которое указано в п. 1, и из такого количества нулей, которое указано в п. 2 = 9 .
ответ: 0, (7) = 7/9 .
0,8 (5)
1) Количество цифр в периоде = 1.
2) Количество цифр после запятой, но до периода = 1.
3) Число из цифр после запятой, включая период, = 85.
4) Число после запятой, но до периода = 8.
5) Числитель искомой дроби = п. 3 - п. 4 = 85 - 8 = 77.
6) Знаменатель искомой дроби - число, которое составлено из такого количества девяток, которое указано в п. 1, и из такого количества нулей, которое указано в п. 2 = 90.
ответ: 0,8(5) = 77/90 .
0,73(4)
1) Количество цифр в периоде = 1.
2) Количество цифр после запятой, но до периода = 2.
3) Число из цифр после запятой, включая период, = 734.
4) Число после запятой, но до периода = 73.
5) Числитель искомой дроби = п. 3 - п. 4 = 734-73=661.
6) Знаменатель искомой дроби - число, которое составлено из такого количества девяток, которое указано в п. 1, и из такого количества нулей, которое указано в п. 2 = 900.
ответ: 0,73(4) = 661/900 .
8,342(3)
1) Количество цифр в периоде = 1.
2) Количество цифр после запятой, но до периода = 3.
3) Число из цифр после запятой, включая период, = 3423.
4) Число после запятой, но до периода = 342.
5) Числитель искомой дроби = п. 3 - п. 4 = 3423-342=3081.
6) Знаменатель искомой дроби - число, которое составлено из такого количества девяток, которое указано в п. 1, и из такого количества нулей, которое указано в п. 2 = 9000.
7) Дробную часть сокращаем на 3:
3081 / 9000 = 1027/3000.
ответ: 8,342(3) = 8 1027/3000 .
Задание 2.
Обыкновенную дробь представьте в виде периодической дроби :
5/6, 9/11.
Делим числитель на знаменатель и заключаем в скобки периодическую часть. В первом случае период равен (3) , во втором случае (81).
5/6 = 0,833333... = 0,8(3)
9/11 = 0,81818181... = 0,(81)
ответ: 5/6 = 0,8(3); 9/11 = 0,(81).
ответ: 1924
Пошаговое объяснение: 1) упрощаем: 47с+12с=59с;
2) складываем 34-58-58=82;
3) умножаем 59 на 34, потому что с=34 и вычитаем из этого 82: 2006-82=192;
47с+34-58+12c-58=59c-82
c=34
(59*34)-82=2006-82=1924