М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
aminyl
aminyl
14.03.2020 11:24 •  Математика

Последнее открытие в , нужно про него рассказать

👇
Ответ:
садов19
садов19
14.03.2020

Последнее не знаю какое было, но вот последние 10. Выберешь любое!

Пошаговое объяснение:

10. Синъити Мотидзуки заявил о доказательстве им abc-гипотезы. Событие попало в конец списка, поскольку до сих пор его доказательство не поддержано большим кругом математиков. Иначе оно занимало бы первое место. А пока, к разочарованию заинтересованных сторон, оно находится в лимбе.

9. Тернарная проблема Гольдбаха. «Начиная с 7, любое нечётное число является суммой трёх простых». Ещё с 1937 года это утверждение верно для достаточно больших нечётных чисел, но в 2013 году перуанский математик Харальд Гельфготт проверил это утверждение на компьютере для чисел вплоть до 1030. Независимо от него это сделал и Дэвид Плат.

8. Вьетнамский математик Нго Бао Тяу доказательством фундаментальной леммы, составляющей часть программы Ленглендса. Ужасно техническое, но очень важное событие программы.

7. 17 подсказок судоку. В 2012 году Макгуайр, Тьюгеман и Чиварио доказали, что минимальное количество подсказок, уникальным образом идентифицирующих задачу в Судоку, равно 17. Хотя и не каждый набор из 17 подсказок приводит к уникальному решению, теорема говорит, что нельзя построить допустимую задачу только на 16-и подсказках.

6. Гомотопическая теория типов / аксиома унивалентности. Новый подход к основам математики под руководством Владимира Воеводского привлекает пристальное внимание. Кроме математического интереса, она обещает так модифицировать язык высшей математики, чтобы сделать его более пригодным для компьютеризированной обработки.

5. Нетриангулируемые многообразия. На шестом месте списка – удивительное открытие Киприана Манолеску [Ciprian Manolescu] по поводу нетриангулируемых многообразий в измерениях от 5 и выше.

4. Мозаика Соколара-Тейлора. Известна мозаика Пенроуза – набор плиток, которыми можно замостить плоскость, но при этом только апериодически. Много лет существовал вопрос – возможно ли сделать это при только одной плитки. Джоан Тейлор и Джошуа Соколар обнаружили такую плитку.

3. Окончание проекта «Флайспек». В 1998 году Томас Хейлс объявил о получении доказательства гипотезы Кеплера по поводу наиболее эффективного упаковки пушечных ядер. К сожалению, его доказательство было слишком длинным и включало большое количество вычислительных вставок, в связи с чем проверявшие его люди не смогли завершить проверку. Поэтому Хейлс с командой взялись за это самостоятельно, призвав на вс компьютерные программы Isabelle и HOL Light. Результат работы стал значимой вехой не только в дискретной геометрии, но и в системах автоматического получения доказательств.

2. Разбиение чисел. Сколькими можно записать положительное целое число в виде суммы меньших чисел? В 2011 году Кен Оно и Ян Брюинье предложили ответ на этот старый вопрос.

1. Интервалы между простыми числами. Неудивительно, что это достижение попало на первое место. Этот замечательный результат получил Чжан Итан в 2013 году. Он доказал, что существует бесконечно много последовательных простых чисел с разностью не более 70 миллионов. Последовавший за этим ажиотаж привёл к тому, что Джеймс Мэйнард и проект Polymath, организованный Теренсом Тао, уменьшили это число до 246.

4,4(60 оценок)
Ответ:
yanaerasova017
yanaerasova017
14.03.2020
10. Синъити Мотидзуки заявил о доказательстве им abc-гипотезы. Событие попало в конец списка, поскольку до сих пор его доказательство не поддержано большим кругом математиков. Иначе оно занимало бы первое место. А пока, к разочарованию заинтересованных сторон, оно находится в лимбе.

9. Тернарная проблема Гольдбаха. «Начиная с 7, любое нечётное число является суммой трёх простых». Ещё с 1937 года это утверждение верно для достаточно больших нечётных чисел, но в 2013 году перуанский математик Харальд Гельфготт проверил это утверждение на компьютере для чисел вплоть до 1030. Независимо от него это сделал и Дэвид Плат.

8. Вьетнамский математик Нго Бао Тяу доказательством фундаментальной леммы, составляющей часть программы Ленглендса. Ужасно техническое, но очень важное событие программы.

7. 17 подсказок судоку. В 2012 году Макгуайр, Тьюгеман и Чиварио доказали, что минимальное количество подсказок, уникальным образом идентифицирующих задачу в Судоку, равно 17. Хотя и не каждый набор из 17 подсказок приводит к уникальному решению, теорема говорит, что нельзя построить допустимую задачу только на 16-и подсказках.

6. Гомотопическая теория типов / аксиома унивалентности. Новый подход к основам математики под руководством Владимира Воеводского привлекает пристальное внимание. Кроме математического интереса, она обещает так модифицировать язык высшей математики, чтобы сделать его более пригодным для компьютеризированной обработки.

5. Нетриангулируемые многообразия. На шестом месте списка – удивительное открытие Киприана Манолеску [Ciprian Manolescu] по поводу нетриангулируемых многообразий в измерениях от 5 и выше.

4. Мозаика Соколара-Тейлора. Известна мозаика Пенроуза – набор плиток, которыми можно замостить плоскость, но при этом только апериодически. Много лет существовал вопрос – возможно ли сделать это при только одной плитки. Джоан Тейлор и Джошуа Соколар обнаружили такую плитку.

3. Окончание проекта «Флайспек». В 1998 году Томас Хейлс объявил о получении доказательства гипотезы Кеплера по поводу наиболее эффективного упаковки пушечных ядер. К сожалению, его доказательство было слишком длинным и включало большое количество вычислительных вставок, в связи с чем проверявшие его люди не смогли завершить проверку. Поэтому Хейлс с командой взялись за это самостоятельно, призвав на вс компьютерные программы Isabelle и HOL Light. Результат работы стал значимой вехой не только в дискретной геометрии, но и в системах автоматического получения доказательств.

2. Разбиение чисел. Сколькими можно записать положительное целое число в виде суммы меньших чисел? В 2011 году Кен Оно и Ян Брюинье предложили ответ на этот старый вопрос.

1. Интервалы между простыми числами. Неудивительно, что это достижение попало на первое место. Этот замечательный результат получил Чжан Итан в 2013 году. Он доказал, что существует бесконечно много последовательных простых чисел с разностью не более 70 миллионов. Последовавший за этим ажиотаж привёл к тому, что Джеймс Мэйнард и проект Polymath, организованный Теренсом Тао, уменьшили это число до 246.
4,4(52 оценок)
Открыть все ответы
Ответ:
Edam
Edam
14.03.2020
ПРОЦЕНТ - это ОДНА СОТАЯ = 1/100 = 0,01.
Найти ЧАСТЬ от ЦЕЛОГО по данной ДОЛЕ 
ЧАСТЬ = ЦЕЛОЕ умножить на ДОЛЮ.
1% от 300  или 1/100 от 300 - умножаем ЦЕЛОЕ =300 на ДОЛЮ = 1%
Решение 300*1/100 = 300/100 = 3
1 м *1% = 1м*1/100 = 1/100 м = 1 см.
700*1% = 700/100 = 7
1 кг*1% = 1 кг*1/100 = 0,01 кг = 10 г.
И переходим к задачам про товар.
Всего в ЦЕЛОМ -  100%. Значит, если цена снизилась на 1%, то осталось 99%.
Была цена = 2
СКИДКА = 1% или 2*1/100 = 2/100 = 0,02 евро = на 2 цента скидка - ОТВЕТ 1
Сколько стоит сейчас? Два варианта.
1) От целого отнять скидку.  Или 2 - 0,02 = 1,98  - стоит сейчас
2) Новая цена (1-1%)*2 = 2*99/100 = 198/100 = 1,98 - стоит сейчас.
ответ один и тот же -  1,98 евро - ОТВЕТ 2.
4,7(31 оценок)
Ответ:
ochensad
ochensad
14.03.2020
Здесь всё просто. Смотришь на оба слагаемых и сверяешь с остальными:

В первом и втором примерах есть число 782, значит, большее из них то, к которому прибавим большее число. Это 943.
В первом и третьем общее число 659. Большее первое, так как к нему прибавляем 782.
Во втором и четвертом общее число 943. Большее четвертое, т.к. к нему прибавляем 1105.
В четвертом и шестом общее число 1105. Большее шестое, т.к. к нему добавляем 2563. Заодно эта сумма (шестая) является и самой большой, т.к. оба ее члена являются самыми большими числами.
А пятая сумма наименьшая, т.к. оба ее члена - самые маленькие числа.
ответ: 129+288; 288+659; 782+659; 782+943; 943+1105; 1105+2563.
4,6(42 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ