Пусть скорость пешехода х км/ч Тогда расстояние от А до В 3*х Время, затраченное им на обратный путь 16:х + (3х -16):(х-1) 16:х + (3х -16):(х-1) =3 +1/15 16:х + (3х - 16):(х-1) =46/15 умножим обе части уравнения на 15х(х-1), чтобы избавиться от дробей. 16*15(х-1) +15х (3х - 16)=46 х(х-1) 240х-240 +45х²-240х=46х² -46х 46х² -45х² -46х +240 =0 х² - 46х +240 =0 D = b 2 - 4ac = 1156 √D = 34 х₁=40 ( не подходит для скорости пешехода) х₂=6 км/ч S=vt=6*3=18 км Проверка 16:6 + 2:5= 8/3+ 2/5= 40/15 +6/15=46/15=3 и 1/15 часа 3 и 1/15 -3= 1/15 =4 минуты
задачи на вероятность можно решать по формулам и не понимать их а можно один раз понять и тогда формулы будут ненужны можете изучить мое решение и применить к нему формулы числовые ответы - правильные на 100%
первая деталь окажется бракованной в случае если первая деталь с первого автомата с вероятностью 0,8 она бракованная с вероятностью 0,01 или первая деталь с второго автомата с вероятностью 0,2 она бракованная с вероятностью 0,04 итого вероятность что первая взятая деталь бракованная 0,8*0,01+0,2*0,04 аналогично получаем вероятность что вторая взятая деталь бракованная 0,8*0,01+0,2*0,04 тогда вероятность что обе детали бракованные (0,8*0,01+0,2*0,04)*(0,8*0,01+0,2*0,04)= 0,000256 - ответ на первый вопрос теперь рассмотрим случай что бракованные детали изготовлены исключительно на первом автомате это значит что дважды с вероятностью 0,8 деталь была от первого автомата и каждый раз с вероятностью 0,01 попалась бракованная из всех деталей этого автомата вероятность такого события (0,8*0,01)*(0,8*0,01)= 0,000064 теперь посмотрим, каков вклад этой вероятности в вероятность что выбранные две детали оказались бракованными. (0,8*0,01)*(0,8*0,01) : (0,8*0,01+0,2*0,04)*(0,8*0,01+0,2*0,04) = 0,25 - искомый ответ 2 задания
произошло событие А вероятность которого оценивается как Р(А)=(0,8*0,01+0,2*0,04)*(0,8*0,01+0,2*0,04) вероятность того что это событие произошло именно по интересующему нас алгоритму Р(В)=(0,8*0,01)*(0,8*0,01) тогда условная вероятность (вероятность что произошло событие В при условии что состоялось событие А равна Р(В|А) =Р(В)/Р(А)=(0,8*0,01)*(0,8*0,01) : (0,8*0,01+0,2*0,04)*(0,8*0,01+0,2*0,04) = 0,25