1) 504:21=24 (км/ч) - скорость теплохода против течения
2) 24+2=26 (км/ч) - собственная скорость теплохода
3) 26+2=28 (км/ч) - скорость теплохода по течению
4) 504:28=18 (часов) - время, за которое теплоход пойдет это расстояние по течению реки
Подробнее - на -
Пошаговое объяснение:
I. (2sin²x - 7sinx + 3) · log₂ (x-8) = 0
ОДЗ : x-8 > 0; x > 8
Произведение равно нулю, когда один из множителей равен нулю.
1) 2sin²x - 7sinx + 3 = 0 - квадратное уравнение с неизвестным sinx
D = 7² - 4·2·3 = 25 = 5²
sin x = (7+5)/4 = 3 - не подходит под условие |sin x| ≤ 1
sin x = (7-5)/4 = 1/2
x₁ = π/6 + 2πn, n∈N, n≥2 ( ОДЗ: π/6 + 4π ≈ 13,1 > 8)
x₂ = 5π/6 + 2πk, k∈N ( ОДЗ: 5π/6 + 2π ≈ 8,9 > 8)
2) log₂ (x-8) = 0 ⇒ x - 8 = 2⁰
x = 1 + 8; x₃ = 9
==========================
II. x ∈ (3π; 6π)
3) x₃ = 9 < 9,4 ≈ 3π - не входит в интервал
ответ: ;
I. (2sin²x - 7sinx + 3) · log₂ (x-8) = 0
ОДЗ : x-8 > 0; x > 8
Произведение равно нулю, когда один из множителей равен нулю.
1) 2sin²x - 7sinx + 3 = 0 - квадратное уравнение с неизвестным sinx
D = 7² - 4·2·3 = 25 = 5²
sin x = (7+5)/4 = 3 - не подходит под условие |sin x| ≤ 1
sin x = (7-5)/4 = 1/2
x₁ = π/6 + 2πn, n∈N, n≥2 ( ОДЗ: π/6 + 4π ≈ 13,1 > 8)
x₂ = 5π/6 + 2πk, k∈N ( ОДЗ: 5π/6 + 2π ≈ 8,9 > 8)
2) log₂ (x-8) = 0 ⇒ x - 8 = 2⁰
x = 1 + 8; x₃ = 9
==========================
II. x ∈ (3π; 6π)
3) x₃ = 9 < 9,4 ≈ 3π - не входит в интервал
ответ: ;
18 часов
Пошаговое объяснение:
S = 540 км
t против теч - 21 ч
t по теч - ? ч
v теч = 2 км/ч
1) 504:21=24 км/ч - скорость теплохода против течения
2) 24+2=26 км/ч - собственная скорость теплохода
3) 26+2=28 км/ч - скорость теплохода по течению
4) 504:28=18 ч - время, за которое теплоход пойдет это расстояние по течению реки