Используем формулу расстояния между двумя точками:
MN² = (х'' - х')² + (y'' - y')²
MN²= (-4+5)² + (4-1)²
MN²= 1+9
MN = √10
Аналогично со сторонами NP,PQ,QM:
NP²=(-1+4)²+(5-4)² PQ²=(-2+1)²+(2-5)²
NP²= 9+1 PQ²= 1+9
NP=√10 PQ=√10
QM²=(-5+2)²+(1-2)²
QM²= 9+1
QM=√10
Так как NM=NP=PQ=QM, тогда MNPQ - квадрат.
Квадрат - это параллелограмм с равными сторонами и кутами по 90°. Тогда MNPQ - параллелограмм.
По аналогии находим NQ и MP - диагонали. NQ = MP - диагонали квадрата.
NQ² = (-2+4)²+(2-4)²
NQ² = 4+4
NQ² = 8
NQ =√8
NQ =2√2
Тогда MP =2√2
Для левой части ур-ия применим формулу суммы синусов:
Sin x + Sin y = 2Sin ((x + y)/2) · Cos ((x - y)/2)
А для правой части формулы понижения степени:
Cos² x = (1 + Cos 2x) / 2
Sin² x = (1 - Cos 2x) / 2
То есть:
2Sin 4x · Cos x = 2 · ((1 + Cos 4x)/2 - (1 - Cos 6x)/2))
2Sin 4x · Cos x = 1 + Cos 4x - 1 + Cos 6x
2Sin 4x · Cos x = Cos 4x + Cos 6x
Для правой части ур-ия применим формулу суммы косинусов:
Cos x + Cos y = 2Cos ((x + y)/2) · Cos ((x - y)/2)
2Sin 4x · Cos x = 2Cos 5x * Cos x
2Sin 4x · Cos x - 2Cos 5x * Cos x = 0
Выносим общий множитель 2Cos x:
2Cos x · (Sin 4x - Cos 5x) = 0
Отсюда:
Cos x = 0 ⇒ x = ±π/2 + 2πk, k — целое
Sin 4x - Cos 5x = 0
Cos (π/2 - 4x) - Cos (5x) = 0
Применяем формулу разности косинусов:
Cos x - Cos y = -2Sin ((x + y)/2) · Sin ((x - y)/2)
То есть:
-2Sin ((π/2 + x)/2) · Sin ((π/2 - 9x)/2) = 0
1) Sin ((π/2 + x)/2) = 0
(π/2 + x)/2 = πk
π/2 + x = 2πk
x = -π/2 + 2πk
2) Sin ((π/2 - 9x)/2) = 0
(π/2 - 9x)/2 = πk
π/2 - 9x = 2πk
9x = π/2 - 2πk
x = π/18 - 2π/(9k)
ответ:
x = ±π/2 + 2πk, k — целое
x = π/18 - 2π/(9k)