М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
спеш
спеш
13.02.2022 13:03 •  Математика

Ученик прочитал 1/8 книги а затем 2/7 оставшейся части после этого он заменил что прочитал на 18 страниц меньше чем ему осталось прочитать сколько страниц в книге? 80

👇
Ответ:
Гововрв
Гововрв
13.02.2022

1-1/8=7/8 оставшаяся часть

7/8*2/7=1/4 часть книги

1/8+1/4=3/8 такая часть книги прочитана

1-3/8=5/8 такую часть книги осталось прочитать

5/8-3/8=2/8=1/4 и это составляет 18 страниц

18:1/4=72 страниц в книге

поставь

Пошаговое объяснение:

4,8(16 оценок)
Открыть все ответы
Ответ:
katy0987
katy0987
13.02.2022
Внашей семье день победы - самый настоящий праздник. он дорог своей памятью о тех, кто погиб, защищая нашу родину от фашистских захватчиков и о тех, кто остался в живых.мы все: от мала до велика,­ всегда должны чтить память о­ людях, которые отдали свои жизни,­ для того, чтобы нам всем дать возможность жить на земле­ и в этой свободной стране. подвиг героев войны­ бессмертен. память об этом времени еще долгие годы будет жить в художественной и в наших сердцах. в школе нам на уроках преподаватели рассказывают, какую цену пришлось заплатить за наше счастье нашим . когда я читала произведение «а зори здесь тихие» (борис васильев), а потом посмотрела фильм по этому сценарию, то воочию увидела, какие молодые девушки встали на защиту своей родины. было удивительно смотреть на этих хрупких, совсем еще девчонок, в руках которых были автоматы, а на ногах грубые мужские сапоги. им,­ наверное, точно также как и современным девушкам, хотелось ходить на танцы, рожать детей, а пришлось встать перед головорезами и не дать им пройти через рубеж нашей границы. они просто выполняли свой долг, сражаясь с фашистами до самого последнего вздоха. даже немцы, когда увидели убитую девушку, были ошеломлены тем, что им на пути встала такая милая, совсем еще молодая женщина, а не вооруженный до зубов боец армии.перед людьми, отстаивающими правду и свободу, смерть не властна. поэтому и подвиг их бессмертен.9 мая, в день великой победы мы всегда ходим к памятнику погибшим солдатам на митинг и­ возложение цветов. это традиция нашей семьи. с каждым годом число ветеранов становится все меньше и меньше. жаль, что уходят от нас такие замечательные люди. залпом из ружей, отдается последняя почесть погибшим и не вернувшимся с полей битв. моя бабушка, хоть и не воевала, но была во время войны на оккупированной территории на украине. когда она нам рассказывает об этих труднейших годах её жизни, сложно поверить, что такие дети, как в то время была наша бабуля, в тылу и не жили, а выживали в голодное время, своим родителям, работали на заводах. поэтому она до сих пор не может выбросить даже крошки хлеба со стола, она их высыпает птичкам.в этот праздник мы всегда поздравляем ветеранов, а свою бабушку отдельно. она до сих пор любит сирень, а в мае она как раз буйно расцветает. когда мы вручаем ей подарок и букет, она всегда вспоминает 9 мая 1945 года, когда была объявлена победа. она всегда плачет
4,8(41 оценок)
Ответ:
nasamar
nasamar
13.02.2022

\mathrm{tg}a_1\mathrm{tg}a_2+\mathrm{tg}a_2\mathrm{tg}a_3+\mathrm{tg}a_3\mathrm{tg}a_4+\mathrm{tg}a_4\mathrm{tg}a_5=4

Выразим через третий член и разность прогрессии все остальные члены:

a_1=a_3-2d

a_2=a_3-d

a_4=a_3+d

a_5=a_3+2d

Подставим получившиеся соотношения в уравнение:

\mathrm{tg}(a_3-2d)\cdot\mathrm{tg}(a_3-d)+\mathrm{tg}(a_3-d)\cdot\mathrm{tg}a_3+

+\mathrm{tg}a_3\cdot\mathrm{tg}(a_3+d)+\mathrm{tg}(a_3+d)\cdot\mathrm{tg}(a_3+2d)=4

Применяем формулы тангенса суммы и тангенса разности:

\dfrac{\mathrm{tg}a_3-\mathrm{tg}2d}{1+\mathrm{tg}a_3\mathrm{tg}2d}\cdot\dfrac{\mathrm{tg}a_3-\mathrm{tg}d}{1+\mathrm{tg}a_3\mathrm{tg}d}+\dfrac{\mathrm{tg}a_3-\mathrm{tg}d}{1+\mathrm{tg}a_3\mathrm{tg}d}\cdot\mathrm{tg}a_3+

+\mathrm{tg}a_3\cdot\dfrac{\mathrm{tg}a_3+\mathrm{tg}d}{1-\mathrm{tg}a_3\mathrm{tg}d}+\dfrac{\mathrm{tg}a_3+\mathrm{tg}d}{1-\mathrm{tg}a_3\mathrm{tg}d}\cdot\dfrac{\mathrm{tg}a_3+\mathrm{tg}2d}{1-\mathrm{tg}a_3\mathrm{tg}2d}=4

Из имеющегося соотношения для разности прогрессии выразим величины \mathrm{tg}d и \mathrm{tg}2d:

\cos d=\sqrt{0.2}

\mathrm{tg}^2d=\dfrac{1}{\cos^2d} -1=\dfrac{1}{0.2} -1=5-1=4

1) \mathrm{tg}d=2\Rightarrow \mathrm{tg}2d=\dfrac{2\mathrm{tg}d}{1-\mathrm{tg}^2d} =\dfrac{2\cdot2}{1-2^2} =-\dfrac{4}{3}

2) \mathrm{tg}d=-2\Rightarrow \mathrm{tg}2d=\dfrac{2\mathrm{tg}d}{1-\mathrm{tg}^2d} =\dfrac{2\cdot(-2)}{1-(-2)^2} =\dfrac{4}{3}

Первый случай: \mathrm{tg}d=2,\ \mathrm{tg}2d=-\dfrac{4}{3}

\dfrac{\mathrm{tg}a_3+\frac{4}{3} }{1-\frac{4}{3}\mathrm{tg}a_3}\cdot\dfrac{\mathrm{tg}a_3-2}{1+2\mathrm{tg}a_3}+\dfrac{\mathrm{tg}a_3-2}{1+2\mathrm{tg}a_3}\cdot\mathrm{tg}a_3+

+\mathrm{tg}a_3\cdot\dfrac{\mathrm{tg}a_3+2}{1-2\mathrm{tg}a_3}+\dfrac{\mathrm{tg}a_3+2}{1-2\mathrm{tg}a_3}\cdot\dfrac{\mathrm{tg}a_3+\frac{4}{3} }{1-\frac{4}{3}\mathrm{tg}a_3}=4

Замена: \mathrm{tg}a_3=t

\dfrac{t+\frac{4}{3} }{1-\frac{4}{3}t}\cdot\dfrac{t-2}{1+2t}+\dfrac{t-2}{1+2t}\cdot t+t\cdot\dfrac{t+2}{1-2t}+\dfrac{t+2}{1-2t}\cdot\dfrac{t-\frac{4}{3} }{1+\frac{4}{3}t}=4

Числитель и знаменатель первой и последней дроби умножим на 3:

\dfrac{3t+4 }{3-4t}\cdot\dfrac{t-2}{1+2t}+\dfrac{t-2}{1+2t}\cdot t+t\cdot\dfrac{t+2}{1-2t}+\dfrac{t+2}{1-2t}\cdot\dfrac{3t-4}{3+4t}=4

Складываем первые два слагаемых левой части уравнения:

\dfrac{3t+4}{3-4t}\cdot\dfrac{t-2}{1+2t}+\dfrac{t-2}{1+2t}\cdot t=\dfrac{t-2}{1+2t}\cdot\left(\dfrac{3t+4}{3-4t}+t\right)=

=\dfrac{t-2}{1+2t}\cdot\dfrac{3t+4+t(3-4t)}{3-4t}=\dfrac{t-2}{1+2t}\cdot\dfrac{3t+4+3t-4t^2}{3-4t}=

=\dfrac{t-2}{1+2t}\cdot\dfrac{4+6t-4t^2}{3-4t}=\dfrac{t-2}{1+2t}\cdot\dfrac{-2(t-2)(2t+1)}{3-4t}=

=\dfrac{-2(t-2)^2(2t+1)}{(1+2t)(3-4t)}=-\dfrac{2(t-2)^2}{3-4t}

Складываем последние два слагаемых левой части уравнения:

t\cdot\dfrac{t+2}{1-2t}+\dfrac{t+2}{1-2t}\cdot\dfrac{3t-4}{3+4t}=\dfrac{t+2}{1-2t}\cdot\left(t+\dfrac{3t-4}{3+4t}\right)=

=\dfrac{t+2}{1-2t}\cdot\dfrac{t(3+4t)+3t+4}{3+4t}=\dfrac{t+2}{1-2t}\cdot\dfrac{3t+4t^2+3t+4}{3+4t}=

=\dfrac{t+2}{1-2t}\cdot\dfrac{4t^2+6t+4}{3+4t}=\dfrac{t+2}{1-2t}\cdot\dfrac{2(t+2)(2t-1)}{3+4t}=

=\dfrac{2(t+2)^2(2t-1)}{(1-2t)(3+4t)}=-\dfrac{2(t+2)^2}{3+4t}

Складываем две получившиеся в предыдущих пунктах величины:

-\dfrac{2(t-2)^2}{3-4t}-\dfrac{2(t+2)^2}{3+4t}=-2\left(\dfrac{(t-2)^2}{3-4t}+\dfrac{(t+2)^2}{3+4t}\right)=

=-2\left(\dfrac{t^2-4t+4}{3-4t}+\dfrac{t^2+4t+4}{3+4t}\right)=

=-2\left(\dfrac{(t^2-4t+4)(3+4t)+(t^2+4t+4)(3-4t)}{(3-4t)(3+4t)}\right)=

=-2\left(\dfrac{3t^2+4t^3-12t-16t^2+12+16t+3t^2-4t^3+12t-16t^2+12-16t}{9-16t^2}\right)=

=-2\left(\dfrac{3t^2-16t^2+12+3t^2-16t^2+12}{9-16t^2}\right)=-2\left(\dfrac{-26t^2+24}{9-16t^2}\right)=\dfrac{52t^2-48}{9-16t^2}

Тогда, уравнение примет вид:

\dfrac{52t^2-48}{9-16t^2}=4

52t^2-48=4(9-16t^2)

52t^2-48=36-64t^2

116t^2=84

t^2=\dfrac{84}{116} =\dfrac{21}{29}

t=\pm\sqrt{\dfrac{21}{29} }

Обратная замена: \mathrm{tg}a_3=\pm\sqrt{\dfrac{21}{29} }

Находим требуемую величину:

\cos^2 a_3=\dfrac{1}{1+\mathrm{tg}^2a_3} =\dfrac{1}{1+\frac{21}{29} } =\dfrac{1}{\frac{50}{29} } =\dfrac{29}{50} =\boxed{0.58}

Второй случай: \mathrm{tg}d=-2,\ \mathrm{tg}2d=\dfrac{4}{3}

Заметим, что при подстановке этих значений в уравнение, получится такое же уравнение, как и в предыдущем случае с той лишь разницей, что первое и четвертое, а также второе и третье слагаемое будут поменяны местами. Значит, никаких новых результатов получено не будет.

ответ: 0.58

4,7(47 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ