Если геометрическая прогрессия убывающая, значит знаменатель q меньше 1. Пусть дана геометрическая прогрессия: b1; b1*q; b1*q²; b1*q³; ... и ее сумма равна 36, а прогрессия состоящая из четных членов данной прогрессии имеет вид: b1*q; b1*q³; ... ; значит воспользуемся формулой суммы бесконечной убывающей прогрессии S= b1/ (1-q) и составим два уравнения, получим систему: 36 = b1/ (1 - q) и 3 = b1*q/ (1 - q²) (q² является знаменателем второй прогрессии). Выразим из первого уравнения b1 = 36*(1-q) и подставим во второе уравнение 3 = 36*(1-q)*q/ (1 - q²) разделим обе части уравнения на 3
1 = 12*(1-q)*q/ (1 - q)(1+q); сократим скобки, они не равны нулю, значит можно сокращать. 1 = 12*q/ (1+q) дробь равна 1, значит числитель равен знаменателю 12*q=1+q или 11*q=1 откуда q= 1/11 ответ: 1/11
Дано: Трапеция ABCD. BC = 11, AD = 23. AB = CD. S = 136.
Решение: 1.) Проведем 2 высоты - DH и CT. Они равны, т.к. обе перпендикулярны одной стороне AD. Т.к. трапеция равнобедренная, угл A = углу D. Следовательно, прямоугольные треугольники ABH и CDT равны по катету и острому углу, а след. AH = TD. 2.) AH = TD по доказанному. Т.к. BC = HT, след AH = TD = (23 - 11)/2 = 6 3. ) Площадь трапеции = ((BC + AD)/2 )*h = ((23 + 11)/2)* h = 17*h (h - высота) 4. ) S = 17*h, а по условию S = 136. Составляем уравнение - 136 = 17*h, h = 8 5. ) Рассмотрим прямоугольный треугольник ABH. AH = 6 по доказанному. BH = 8 по доказанному. По теореме Пифагора AB^2 = BH^2 + AH^2. Составим уравнение, где X = AB. X^2 = 6^2 + 8^2. X^2 = 36 + 64. X^2 = 100. X = 10 Следовательно, боковая сторона трапеции = 10