Средним арифметическим ряда чисел называется частное от деления суммы этих чисел на число слагаемых.
Для ряда a1,a1,..,an среднее арифметическое вычисляется по формуле:
a¯¯¯=a1+a2+...+ann
Найдем среднее арифметическое для чисел 5,24, 6,97, 8,56, 7,32 и 6,23.
a¯¯¯=5,24+6,97+8,56+7,32+6,235=6.864
Размахом ряда чисел называется разность между наибольшим и наименьшим из этих чисел.
Размах ряда 5,24, 6,97, 8,56, 7,32, 6,23 равен 8,56-5,24=3.32
Модой ряда чисел называется число, которое встречается в данном ряду чаще других.
Ряд чисел может иметь более одной моды, а может не иметь моды совсем.
Модой ряда 32, 26, 18, 26, 15, 21, 26 является число 26, встречается 3 раза.
В ряду чисел 5,24, 6,97, 8,56, 7,32 и 6,23 моды нет.
Ряд 1, 1, 2, 2, 3 содержит 2 моды: 1 и 2.
Медианой упорядоченного ряда чисел с нечётным числом членов называется число, записанное посередине, а медианой упорядоченного ряда чисел с чётным числом членов называется среднее арифметическое двух чисел, записанных посередине.
Медианой произвольного ряда чисел называется медиана соответствующего упорядоченного ряда.
Медиана ряда 4, 1, 2, 3, 3, 1 равна 2.5.
Пошаговое объяснение: Рішення:
22+18=40 (км/год) швидкість зближення двох катерів.
120÷40=3 (год). Через 3 години вони зустрінуться.
Відповідь: через 3 години.
Обернена задача:
Від двох пристаней відстань між якими 120 км, одночасно назустріч один одному відійшли два катери. Швидкість першого катера 18 км/год. Через 3 години відбулася зустріч. Яка швидкість другого катера?
Рішення:
18*3=54 (км) пройшов перший катер до зустрічі.
120-54=66 (км) пройшов другий катер до зустрічі.
66÷3=22 (км/год) швидкість другого катера.
Відповідь: 22 км/год.
Обернена задача:
Від двох пристаней одночасно назустріч один одному, відійшли два катери. Швидкість одного катера 18 км/год, а другого 22 км/год. Через 3 години відбулася зустріч. Яка відстань між двох пристаней?
Рішення:
18+22=40 (км/год) швидкість зближення двох катерів.
40*3=120 (км) відстань між двох пристаней.
Відповідь: 120 км.