Автомобиль первую часть пути за 2 за 2,4 часа а вторую за час 1.6ч во сколько раз меньше времени из расходовано на вторую часть пути чем на первую? сколько процентов всего времени движения затрачено на первую часть пути?
Решаем обратную xyz · 73 = ab 254 3z -число, оканчивающееся на 4 это 3 на 8 значит z=8 перепишем столбиком х у 8 7 3 3х(3у+2)4 7х(7у+5)6 при сложении 3у+2 + 6 - число, оканчивающееся на 5 если 3у +8=15 , тогда у- дробное если 3у+8 =25, то у - дробное 3у+8 =35 у= 9 теперь снова х98 умножим на 73 столбиком х 9 8 7 3 (3х+2) 9 4 (7х+6)8 6 а в 2 5 4 3х+2+8+1 ( в остатке от 15) дает число, оканчивающееся на 2 это получится при х=7 итак 798 умножим на 73 и получим 58254
ответ:
пошаговое объяснение:
a1 = b1+2
a2 = b1*q+5
a3 = b1*q^2+7
a4 = b1*q^3+7
по свойствам арифметической прогрессии а1+а3=2а2
b1+2 + b1*q^2+7 = 2*b1*q+10
b1 - 2*b1*q + b1*q^2 = 10 - 7 - 2
b1*(1-2q+q^2) = 1
b1*(1-q)^2 = 1
b1 = 1/(1-q)^2
b1*g = q/(1-q)^2 [формула 1]
также по свойствам а2+а4=2*а3
b1*q+5 + b1*q^3+7 = 2*b1*q^2+14
b1*q - 2*b1*q^2 + b1*q^3 = 2
b1*q*(1-q)^2 = 2
b1*q = 2/(1-q)^2 [формула 2]
в формулах [1] и [2] левые части равны. приравниваем правые части
q/(1-q)^2 = 2/(1-q)^2
q = 2
b1 = 1/(1-q)^2 = 1/(1-2)^2 = 1
a1 = b1+2 = 1+2 = 3
a2 = b1*q+5 = 1*2+5 = 7
a3 = b1*q^2+7 = 1*2^2+7 = 11
a3 = b1*q^3+7 = 1*2^3+7 = 15