Все три заданные функции - прямые. Сразу можно заметить, что прямые у=2х+1 и у=2х-3 - параллельны, поскольку угловые коэффициенты равны (2=2). Значит эти функции пересекаться не будут.
у=2х+1 и у=х+7 - пересекаются, чтобы найти точки пересечения приравняем оба графика. 2х+1=х+7 2х-х=7-1 х=6 у=6+7=13 Значит графики пересекутся в т. (6; 13).
у=2х-3 и у=х+7 также пересекаются 2х-3=х+7 х=10 у=10+7=17 Значит т. пересечения (10; 17)
Строим графики - поскольку все 3 функции прямые, то достаточно построения по 2 точкам: у=2х+1 х 0 1 у 1 3
Ведем систему координат. Начало координат в точке А. Направление оси Ох совпадает с вектором AD, оси Оу совпадает с вектором АВ, оси Оz совпадает с вектором АА₁.
Координаты указанных в условии задачи точек A₁(0;0;a); E₁(a/2;a;a); C₁(a;a;a); C(a;a;0)
Уравнение окружности с центром в точке (x₀;y₀;z₀) и радиусом R имеет вид (х-x₀)²+(у-y₀)²+(z-z₀)²=R²
Подставим координаты точек в данное уравнение, получим систему четырех уравнений с четырьмя неизвестными:
(0-x₀)²+(0-y₀)²+(a-z₀)²=R²
((a/2)-x₀)²+(a-y₀)²+(a-z₀)²=R²
(a-x₀)²+(a-y₀)²+(a-z₀)²=R²
(a-x₀)²+(a-y₀)²+(0-z₀)²=R²
Вычитаем из третьего уравнения второе: (a-x₀)²-((a/2)-x₀)²=0; (a-x₀-(а/2)+х₀)(a-x₀+(а/2)-х₀) ⇒ х₀ =3а/4.
Вычитаем из третьего уравнения первое (a-x₀)²+(a-y₀)²-(0-x₀)²-(0-y₀)²=0; (a-x₀-x₀)(a-x₀+x₀)+(a-у₀-у₀)(a-у₀+у₀)=0 a-2x₀+a-2y₀=0 ⇒x₀+y₀=a y₀=a - x₀=a - (3a/4)=a/4
Вычитаем из третьего уравнения четвертое (a-z₀)²- (0-z₀)²=0; (a-z₀-z₀)(a-z₀+z₀)=0 ⇒ z₀ =а/2.
Подставим найденные координаты центра окружности в первое уравнение: (0-(3а/4))²+(0-(а/4))²+(a-(а/2))²=R²⇒ R=a·√(7/8).
27 см2
Пошаговое объяснение:
С =18 см
R = C/(2π)
S = πR^2 = π (C/(2π))^2 = (C/2)^2 *1/π = (18/2)^2 *1/3 = 81/3 =27 см2