Жиын ұғымы — математиканың негізінде жатқан жалпы ұғымдардың бірі. Сондықтан жиын ұғымының дәл анықтамасын беру мүмкін емес. Біз жиын деп нені түсінетінімізді ғана айта аламыз. Әдетте жиын ретінде әртүрлі объектілердің алдын ала берілген ерекшеліктері бойынша топтастырылуын айтамыз.
Жиындарды үлкен латын әріптері арқылы белгілейміз: {\displaystyle A,B,C,X,I,Z}{\displaystyle A,B,C,X,I,Z} және т.б. Жиынды қүрайтын объектілер осы жиынның элементтері деп аталады. Жиын элементтері кіші латын әріптерімен белгіленеді: {\displaystyle a,b,c,x,u,v}{\displaystyle a,b,c,x,u,v} және т. б. Қажет болғанда төменгі және жоғарғы индекстер еркін қолданылады.
Егер {\displaystyle x}{\displaystyle x} объектісі {\displaystyle A}{\displaystyle A} жиынының элементі болса, бұл жағдай {\displaystyle x\in A}{\displaystyle x\in A} белгісімен таңбаланады және "{\displaystyle x}{\displaystyle x} элементі {\displaystyle A}{\displaystyle A} жиынына тиісті" деп оқылады.
Егер {\displaystyle x}{\displaystyle x} объектісі {\displaystyle A}{\displaystyle A} жиынынан тыс болса, оны {\displaystyle x\notin A}{\displaystyle x\notin A} арқылы белгілеп, "{\displaystyle x}{\displaystyle x} элементі {\displaystyle A}{\displaystyle A} жиынына тиісті емес" деп оқимыз.
Қоршаған орта немесе ғылыми пәндердің қай-қайсысы болса да жиын ұғымына қажетті мысалдардың кез келген түрін бере алады. Айталық, өсімдіктер түрлері, кітаптар, жай сандар, жазықтықтағы түзулер - жиын ұғымының мысалдары. Алғашқы екеуі ақырлы жиындардың мысалын берсе, соңғы екеуі ақырсыз жиындардың мысалы болады.
Жиындарды олардың элементтерінің тізімін немесе олардың элементеріне ортақ қасиеттерді көрсету жолымен беруге болады. Мысалы, {\displaystyle A=\{a_{1},a_{2},\ldots ,a_{n}\}}{\displaystyle A=\{a_{1},a_{2},\ldots ,a_{n}\}} жэне {\displaystyle B=\{x|x-}{\displaystyle B=\{x|x-}тақ сан {\displaystyle \}}{\displaystyle \}} . Осы екі жолмен анықталған, бірі ақырлы, бірі ақырсыз жиындардың мысалдары бола алады.
Жиындардың мысалдары:
{\displaystyle \mathbb {N} =\{0,1,2,3,\ldots \}}{\displaystyle \mathbb {N} =\{0,1,2,3,\ldots \}} - натурал сандар жиыны;
{\displaystyle \mathbb {Z} =\{0,\pm 1,\pm 2,\pm 3,\ldots \}}{\displaystyle \mathbb {Z} =\{0,\pm 1,\pm 2,\pm 3,\ldots \}} - бүтін сандар жиыны;
{\displaystyle \mathbb {Q} =\{{\frac {m}{n}}|m\in \mathbb {Z} ,n\in \mathbb {N} \}}{\displaystyle \mathbb {Q} =\{{\frac {m}{n}}|m\in \mathbb {Z} ,n\in \mathbb {N} \}} - рационал сандар жиыны;
{\displaystyle \mathbb {R} }{\displaystyle \mathbb {R} } - нақты сандар жиыны кеңінен қолданылады.
Пошаговое объяснение:
1. Сотая часть числа? (Процент.)
2. Что легче: 1 кг ваты или 1 кг железа? (Одинаково.)
3. Может ли при умножении получиться ноль? (Да.)
4. Чему равна четверть часа? (15 мин.)
5. Специфическая единица измерения объёма нефти? (Баррель.)
6. Первая координата точки? (Абсцисса.)
7. Наука, изучающая свойства фигур на плоскости? (Планиметрия.)
8. Прибор для измерения углов? (Транспортир.)
9. Учёный, наиболее известным достижением которого стало «решето» для отсеивания простых чисел? (Эратосфен.)
10. Утверждение, требующее доказательства? (Теорема.)
11. Часть прямой, состоящая из всех точек прямой, лежащих по одну сторону от данной точки? (Луч, полупрямая.)
12. Отрезок, соединяющий две точки окружности? (Хорда.)
13. Чему равны длины сторон «египетского» треугольника? (3; 4; 5 ед. отрезка.)
14. Переведите на древнегреческий язык слова «натянутая тетива»? (Гипотенуза.)
15. График функции у = kx + b (Прямая.)
16. Сумма углов треугольника? (180°.)
17. Кто сказал: «Математика - царица наук, а арифметика — царица математики»? (К. Гаусс.)
1 8. Абсолютная величина числа? (Модуль.)
19. Независимая переменная величина? (Аргумент.)
20. Третья степень числа? (Куб.)