М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
FactorPlay
FactorPlay
21.03.2023 06:34 •  Математика

Заполнить таблицу по нужно заранее номер 1271

👇
Ответ:
edvi01
edvi01
21.03.2023

Среднее арифметическое:

1) 6

2) 3.7

3) 0.52

Медиана:

1) 6.5

2) 3.8

3) 1/2

Размах:

1) 6

2) 4

3) 0.5

4,5(29 оценок)
Ответ:

Пошаговое объяснение:

В первом среднее арефмитическое 6. Потомучто мы 9+7+4+6+3+7=36 и разделить на 6 будет 6.

4,6(33 оценок)
Ответ:
anny60
anny60
21.03.2023

1) My favourite weather is rainy.

Моя любимая погода - это дождливая погода.

2) We are at the hotel because of the storm.

Из-за шторма мы находимся в отеле(гостинице).

3) Is it spring or summer in your photo?

Это весна или лето на твоей фотографии?

4)The weather is not snowy​.

Погода не снежная.

4,5(56 оценок)
Ответ:
doagetonya
doagetonya
21.03.2023

1) б)

2) а)

3) г)

4) в)

Объяснение:

1) б) т.к это время Present Simple

2) а) т.к. это время Past Simple

3) г) т.к. это время Past Simple и was это будет сказуемым

4) в) т.к. это время Present Simple

4,8(43 оценок)
Ответ:
as79118487190
as79118487190
21.03.2023

Пошаговое объяснение:

6:2=3        -   коэффициент подобия

9:3=3       -    В1С1

12:3=4      -    А1С1

4,6(91 оценок)
Открыть все ответы
Ответ:

Чтобы найти сколькими нулями оканчивается произведение нужно найти сколько раз в этом произведении встречается множитель 10.

Заметим, что 10 раскладывается на простые множители как 10=2·5. Очевидно, сомножителей "2" будет больше чем сомножителей "5". Таким образом, нужно узнать число множителей "5" в произведении. Каждый такой множитель в паре с множителем "2" даст множитель "10" и соответственно дополнительный ноль на конце числа.

Найдем, сколько чисел содержит множитель "5". Всего среди первых 2020 натуральных чисел таких чисел \dfrac{2020}{5} =404, но в данном произведении отсутствуют первых три числа кратные 5 (5, 10, 15). Значит, множитель "5" содержит 404-3=401 число.

Но некоторые числа содержат не один множитель "5", а два. Найдем количество таких чисел.

Для этого разделим 2020 на 5^2:

\dfrac{2020}{5^2} =\dfrac{2020}{25} =80\dfrac{20}{25}

Значит, последнее число, которое содержит в своем составе два множителя "5" - это число 80\cdot25. Первое такое число - очевидно, 25. Значит, всего таких чисел 80.

Еще некоторые числа содержат три множителя "5". Найдем количество таких чисел. Для этого разделим 2020 на 5^3:

\dfrac{2020}{5^3} =\dfrac{2020}{125} =16\dfrac{20}{125}

Значит, последнее число, которое содержит в своем составе три множителя "5" - это число 16\cdot125. Первое такое число - 125. Значит, всего таких чисел 16.

И, наконец, некоторые числа содержат сразу четыре множителя "5". Найдем их количество. Для этого разделим 2020 на 5^4:

\dfrac{2020}{5^4} =\dfrac{2020}{625} =3\dfrac{145}{625}

Значит, последнее число, которое содержит в своем составе четыре множителя "5" - это число 3\cdot625. Первое такое число - 625. Значит, всего таких чисел 3.

Чисел, кратных 5^5=3125 среди множителей нет.

Итак, 401 число содержат в своем составе множитель "5", 80 чисел содержат второй множитель "5", 16 чисел содержит третий множитель "5" и 3 числа содержат четвертый множитель "5". Значит, всего множителей "5" имеется:

401+80+16+3=500

Значит, число 20\cdot21\cdot22\cdot...\cdot2020 оканчивается 500 нулями.

ответ: 500

4,6(19 оценок)
Ответ:
SEITZHANOFF
SEITZHANOFF
21.03.2023

Чтобы найти сколькими нулями оканчивается произведение нужно найти сколько раз в этом произведении встречается множитель 10.

Заметим, что 10 раскладывается на простые множители как 10=2·5. Очевидно, сомножителей "2" будет больше чем сомножителей "5". Таким образом, нужно узнать число множителей "5" в произведении. Каждый такой множитель в паре с множителем "2" даст множитель "10" и соответственно дополнительный ноль на конце числа.

Найдем, сколько чисел содержит множитель "5". Всего среди первых 2020 натуральных чисел таких чисел \dfrac{2020}{5} =404, но в данном произведении отсутствуют первых три числа кратные 5 (5, 10, 15). Значит, множитель "5" содержит 404-3=401 число.

Но некоторые числа содержат не один множитель "5", а два. Найдем количество таких чисел.

Для этого разделим 2020 на 5^2:

\dfrac{2020}{5^2} =\dfrac{2020}{25} =80\dfrac{20}{25}

Значит, последнее число, которое содержит в своем составе два множителя "5" - это число 80\cdot25. Первое такое число - очевидно, 25. Значит, всего таких чисел 80.

Еще некоторые числа содержат три множителя "5". Найдем количество таких чисел. Для этого разделим 2020 на 5^3:

\dfrac{2020}{5^3} =\dfrac{2020}{125} =16\dfrac{20}{125}

Значит, последнее число, которое содержит в своем составе три множителя "5" - это число 16\cdot125. Первое такое число - 125. Значит, всего таких чисел 16.

И, наконец, некоторые числа содержат сразу четыре множителя "5". Найдем их количество. Для этого разделим 2020 на 5^4:

\dfrac{2020}{5^4} =\dfrac{2020}{625} =3\dfrac{145}{625}

Значит, последнее число, которое содержит в своем составе четыре множителя "5" - это число 3\cdot625. Первое такое число - 625. Значит, всего таких чисел 3.

Чисел, кратных 5^5=3125 среди множителей нет.

Итак, 401 число содержат в своем составе множитель "5", 80 чисел содержат второй множитель "5", 16 чисел содержит третий множитель "5" и 3 числа содержат четвертый множитель "5". Значит, всего множителей "5" имеется:

401+80+16+3=500

Значит, число 20\cdot21\cdot22\cdot...\cdot2020 оканчивается 500 нулями.

ответ: 500

4,7(30 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ