42 куста смородины на первом участке
Объяснение:
х - кустов смородины на втором участке
х+9 - кустов смородины на первом участке
После пересадки:
х-3 - кустов на втором участке
(х+9)+3 - кустов на первом участке
По условию задачи на первом участке стало бы в 1,5 раза больше, чем на втором, уравнение:
[(х+9)+3] / (x-3)=1,5
(х+12)/(х-3)=1,5
Умножим уравнение на (х-3), чтобы избавиться от дроби:
х+12=(х-3)*1,5
х+12=1,5х-4,5
х-1,5х= -4,5-12
-0,5х= -16,5
х= -16,5/-0,5
х=33 (куста смородины на втором участке)
33+9=42 (куста смородины на первом участке)
Проверка:
33-3=30
42+3=45
45 : 30 =1,5 (раза), всё верно.
Пусть рабочие по плану делали в день а деталей, и могли выполнить план за д дней. Но изготавливая по (а + 4) детали в день сократили время до (д - 1) дней.
Составим равенства:
а * д = 369 (дет); (1)
(а + 4) * (д - 1) = 369: а * д + 4 * д - 1 * а - 4 = 369; заменим из (1) а * д = 369 во втором равенстве:
360 + 4 * д - а - 4 = 369; 4 * д - а = 4; а = 4 * д - 4;
Вставим в (1) полученное равенство а = 4 * д - 4;
(4 * д - 4) * д = 369; (д - 1) * д = 369/4 = 90;
д^2 - д - 90 = 0. д1,2 = 1/2 +- √1/4 + 90 = 1/2 +- √361/4 = (1 +19)/2 = 10 дней. д - 1 = 9 дней
а = 4 * 10 - 4 = 36 (дет). 36 + 4 = 40 дет.