ответ:
объяснение:
1)найти значения ч ,при которых значения производной фунции f (x) равно 0
1.f (x)=sin 2x-x
2.f (x)=cos2x+2x
3.f (x)=(2x-1)^3
4.f (x)=(1-3x)^5
2)показать что f ' (1)=f ' (0),если f (x)=(2х-3)(3х^2+1)
3)найти значения х ,при которых значения производной функции f (x)=х^3-1,5x^2-18x+(корень из 3) отрицательны
4)найти производную
1. 2.
x^5-3x^3+2x^2-x+3 6x(кубический корень из х)
y= y=
x^3 (корень из х)
5)найти производную
1.
2.
3x^2-2x+1 2x^2-3x+1
y= y=
x+1 2x+1
6)найти производную
1.y=(2x+1)^2(корень из х-1)
2.y=x^2(кубический корень из (х+1)^2
4.y=x cos2x
7)найти значения х,для которых производная функции f (x)=(х-1)(х-2)(х-3) равна -1
1+sin2x
8)дана функция f (x)= найти f ' (0) и f ' (п/6)
1-sin 2x
9)найти значения х,при которых f ' (x) меньше или равно g ' (х),если f (x)=х^3+x^2+x(корень из 3) g(x)=x(корень из 3)+1
Движение по течению: собственная скорость катера плюс скорость течения реки.
Движение против течения: собственная скорость катера минус скорость течения реки.
Находим разницу между скоростями по течению и против течения, и результат делим на 2, так как скорость течения реки учитывается в обоих случаях.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Расстояние между пристанями примем за единицу (целое).
1) 1 : 3 = 1/3 - скорость катера по течению реки;
2) 1 : 4 = 1/4 - скорость катера против течения реки;
3) 1/3 - 1/4 = 4/12 - 3/12 = 1/12 - разница;
4) 1/12 : 2 = 1/12 · 1/2 = 1/24 - скорость течения реки;
5) 1 : 1/24 = 1 · 24/1 = 24 (ч) - время движения плота.
ответ: за 24 часа.