Обозначим а ---скорость первого пешехода в км/час b ---скорость второго пешехода в км/час t ---время в пути до встречи (для обоих пешеходов оно одинаковое))) тогда до встречи первый часть пути =(a*t) км до встречи второй часть пути =(b*t) км после встречи первый оставшуюся ему часть пути за 4 часа b * t / a = 4 отсюда: t = 4 * a / b после встречи второй оставшуюся ему часть пути за 9 часов a * t / b = 9 a*4*a / b² = 9 a / b = 3 / 2 t = 4*3/2 = 2*3 = 6 ответ: первый был в пути 4+6 = 10 часов второй был в пути 9+6 = 15 часов 6 часов они шли до встречи...
V - знак квадратного корня V(5x+7) - V(x+4) =4x+3 ОДЗ: {5x+7>=0 {x+4>=0
{5x>= -7 {x>= -4
{x>=-7/5 {x>= -4
Чтобы избавиться от рациональности, возведем все члены уравнения в квадрат, но для этого правая часть уравнения должна быть положительной: 4x+3>=0; x>= -3/4 У нас получилась следующая ОДЗ: {x>= -7/5 {x>= -4 {x>= -3/4 Решением этой системы будет промежуток: [-3/4; + бесконечность) Итак, возводим в квадрат: (5x+7)^2 - (x+4)^2 = (4x+3)^2 25x^2+70x+49-x^2-8x-16=16x^2+24x+9 24x^2+62x+33= 16x^2+24x+9 24x^2+62x+33-16x^2-24x-9=0 8x^2+38x+24=0 |:2 4x^2+19x+12=0 D= 19^2-4*4*12=169 x1=(-19-13)/8=-4 - это посторонний корень, т.к. не входит в промежуток [-3/4; + беск.) x2=(-19+13)/8= -3/4 Получается, что уравнение имеет один корень => k=1 Корень x=-3/4 принадлежит интервалу (-1;0), значит q=-3/4 Решим уравнение 5k+4q= 5*1+4*(-3/4)=5-3=2 ответ:2
а ---скорость первого пешехода в км/час
b ---скорость второго пешехода в км/час
t ---время в пути до встречи (для обоих пешеходов оно одинаковое)))
тогда
до встречи первый часть пути =(a*t) км
до встречи второй часть пути =(b*t) км
после встречи первый оставшуюся ему часть пути за 4 часа
b * t / a = 4 отсюда: t = 4 * a / b
после встречи второй оставшуюся ему часть пути за 9 часов
a * t / b = 9
a*4*a / b² = 9
a / b = 3 / 2
t = 4*3/2 = 2*3 = 6
ответ: первый был в пути 4+6 = 10 часов
второй был в пути 9+6 = 15 часов
6 часов они шли до встречи...