Скорость движения земли по орбите вокруг солнца равна v 2,98 х 10 в 4 степени напишите какой путь пройдет планета земля во время t 2400 секунды ответ запишите в стандартном виде
Пусть за х дней может закончить Катя, тогда еѐ производительность равна / х . А за у дней может закончить Алиса, тогда еѐ производительность равна / у . Т.к. они могут напечатать курсовую работу за 6 дней, то /х + /у = 1/ Если сначала % = / части курсовой напечатает Катя, а затем завершит работу Алиса, то Алисе остается % = / части курсовой. Вся курсовая работа будет выполнена за 12 дней т.е. ( /) х + (/ ) у = . Решим систему: /х + /у = / , (/) х + (/ ) у = .
+ = , + = ;
у = − , ; + * ( − , ) = *( − , )
у = − , ; , ² − + = ;
у = − , ; ² − + = ;
² − + = ; = , у = или = , у = . - не подходит, т.к. Катя печатает быстрее, чем Алиса. Значит, Катя может напечатать курсовую работу за 10 дней. ответ. за 10 дней
1. Запишите выражение для Δy = f(х0 + Δх) − f(х) и найдите область определения функции Δу, если: a) f(x) = arcsin x, х0 = 1/2; б) f(x) = arccos x, х0 = 0; в) f(x) = ln x, х0 = 2; г) f(x) = sin x, х0 = 2π. 2. Пользуясь определением производной, найдите производную функции: а) y = х в точке х = 1; б) y = х2 в точке х = х0; в) y = в точке х = 4; г) y = х|х| в точке х = 0; д) f(х) = (1 − cos x)/x при x ≠ 0, 0 при x = 0 в точке х = 0. 3. Функция y = f(х) имеет производную в точке а. Вычислите пределы последовательностей: a) n(f(a + 1/n) − f/(a)); б) n(f(a) − f(a − 2/n)); в) n(f(a − 1/n) − f(a + 1/n)); г) n(f(a + 1/n) + f(a + 2/n) + … + f(a + k/n) − kf(a)). 4. Уравнения прямолинейного движения двух точек имеют вид: а) s1 = t, s2 = t2 (t ≥ 0); 6) s1 = t2, s2 = t3 (t ≥ 0); в) s1 = ln t, s2 = (t ≥ 1) (t − время, s1 и s2 − расстояния, пройденные первой и второй точками за время t). Сравните мгновенные скорости этих двух точек, а также их средние скорости на отрезках времени 0 ≤ t ≤ 1 и 1 ≤ t ≤ 2 для случаев а) и б) и на отрезках 1 ≤ t ≤ 4 и 1 ≤ t ≤ 25 для случая в). 5. Составьте уравнение касательной к графику функции y = f(x) в точке с абсциссой x0, если: а) f(x) = sin x, x0 = 0; б) f(x) = x2, x0 = 1; в) f(x) = , x0 = 0; г) f(x) = arctg x, x0 = 1. 6. Найдите точку пересечения касательных к графику функции y = f(x) в точках с абсциссами x1 и x2, если: а) f(x) = cos x, x1 = π/6, x2 = π/2; б) f(x) = ex, x1 = 0, x2 = 1; в) f(x) = arcsin x, x1 =0, x2 = 1/2.
Пусть за х дней может закончить Катя, тогда еѐ производительность равна / х .
А за у дней может закончить Алиса, тогда еѐ производительность равна / у .
Т.к. они могут напечатать курсовую работу за 6 дней,
то /х + /у = 1/
Если сначала % = / части курсовой напечатает Катя,
а затем завершит работу Алиса, то Алисе остается
% = / части курсовой.
Вся курсовая работа будет выполнена за 12 дней т.е.
( /) х + (/ ) у = .
Решим систему:
/х + /у = / ,
(/) х + (/ ) у = .
+ = ,
+ = ;
у = − , ;
+ * ( − , ) = *( − , )
у = − , ;
, ² − + = ;
у = − , ;
² − + = ;
² − + = ;
= , у =
или = , у = . - не подходит, т.к. Катя печатает быстрее, чем Алиса.
Значит, Катя может напечатать курсовую работу за 10 дней.
ответ. за 10 дней