М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
olgabykova2006
olgabykova2006
06.02.2021 18:32 •  Алгебра

Уравнение с дробной степенью

👇
Ответ:
xomidov
xomidov
06.02.2021

3x^{5}+2x^{3}+10x-130=(18-5x)^{\frac{1}{3}}

Слева возрастающая функция, а справа убывающая. Значит уравнение имеет единственный корень. Находим его подбором среди делителей свободного члена. Получаем x = 2 .

ответ : 2

4,8(88 оценок)
Открыть все ответы
Ответ:
Imfind
Imfind
06.02.2021
1. Исследуйте функцию и постройте ее график y=x^3 - 3x^2 + 4 
2. Найдите наибольшее и наименьшее значении функции на данном промежутке: f(x)=(x+1)^2 (x-1)        [-2;0] .

 y= x³ - 3x² + 4 
1.Область определения функции D(f)  =   (-∞; ∞).
2. Определяем точки пересечения графики функции с координатными осями 
a) c осью абсцисс : y =0   ⇒  x³ - 3x² + 4  =0 , x =  -1 корень 
(x³+x²) - (4x²+4x) +(4x+4) = 0 ;
x²(x+1) -4x(x +1) +4(x +1) =0 ⇔(x+1)(x² - 4x+4) =0⇔(x+1)(x-2)²  =0→
A(-1 ;0) ; B(2 ;0).
b) с осью ординат:  x =0   ⇒ y = 4  → C(0 ;4).
3.Определяем интервалы монотонности функции 
Функция возрастает (↑), если у ' >0, убывает(↓) , если у ' < 0.
y ' =3x² -6x  =3x(x-2) ; 
y '    +                     -                      +
 0  2
y     ↑      max         ↓          min         ↑

x =0 точка максимума _ мах (у) = 4
x =2 точка минимума _ min (у) = 2³ -3*2² +4 =0 
Функция возрастает , если x ∈(-∞ ; 0) и  x ∈(2 ;∞ ),  
убывает ,если  x ∈ (0 ;2 ).
---
4)
определим точки перегиба , интервалы  выпуклости и вогнутости
y '' = (y ') '  =(3x² -6x) ' = 6x -6=6(x -1).
y '' =0 ⇒   x=1 (единственная точка перегиба)
График функции  выпуклая , если   y ''< 0 , т.е.  если x < 1 
вогнутая, если  y '' >0 ⇔ x > 1

5. Lim y  → - ∞    ;     Lim y  →  ∞
   x→ - ∞                      x→ ∞ 
* * * * * * * * *
2.
Найдите наибольшее и наименьшее значении функции на данном промежутке: f(x)=(x+1)^2 (x-1)        [-2;0]

f(x)=(x+1)² (x-1)
f ' (x) =2(x+1)(x -1)+(x+1)² =(x+1)(2x-2+x+1) =3(x+1)(x -1/3)
f'(x)      +                  -                           +
(-1) (1/3)  (1/3)  ∉   [-2 ;0]
f(x)     ↑      max         ↓          min         ↑ 

f(-2) =(-2+1)²( -2-1) = -3 ;
f(-1) =(-1+1)²( -2-1) = 0 ;
f(0)  =(0+1)²(0 -1) = -1 ;

наибольшее  значении функции на данном промежутке: max f(x)=f(-1) =0 ;
наименьшее значении функции_minf(x)=f(-2) = -3 .
4,6(3 оценок)
Ответ:
SoniaSonce
SoniaSonce
06.02.2021

В решении.

Объяснение:

Найти корни уравнения методом подбора по теореме Виета:

а) х² - 5х - 6 = 0

По теореме Виета:  

х₁ + х₂ = -р;        х₁ * х₂ = q;

По условию задачи:

х₁ + х₂ = 5;

х₁ * х₂ = -6;

х₁ = 6;      х₂ = -1;

Проверка:

6 - 1 = 5;       6 * (-1) = -6, верно.

b) х² - 4х + 3 = 0

По теореме Виета:  

х₁ + х₂ = -р;        х₁ * х₂ = q;

По условию задачи:

х₁ + х₂ = 4;

х₁ * х₂ = 3;

х₁ = 3;      х₂ = 1;

Проверка:

3 + 1 = 4;       3 * 1 = 3, верно.

с) х² - 8х + 12 = 0

По теореме Виета:  

х₁ + х₂ = -р;        х₁ * х₂ = q;

По условию задачи:

х₁ + х₂ = 8;

х₁ * х₂ = 12;

х₁ = 6;      х₂ = 2;

Проверка:

6 + 2 = 8;       6 * 2 = 12, верно.

d) х² - 6х + 8 = 0

По теореме Виета:  

х₁ + х₂ = -р;        х₁ * х₂ = q;

По условию задачи:

х₁ + х₂ = 6;

х₁ * х₂ = 8;

х₁ = 4;      х₂ = 2;

Проверка:

4 + 2 = 6;       4 * 2 = 8, верно.

е) х² - 8х + 15 = 0

По теореме Виета:  

х₁ + х₂ = -р;        х₁ * х₂ = q;

По условию задачи:

х₁ + х₂ = 8;

х₁ * х₂ = 15;

х₁ = 5;      х₂ = 3;

Проверка:

5 + 3 = 8;       5 * 3 = 15, верно.

f) х² - 2х - 48 = 0

По теореме Виета:  

х₁ + х₂ = -р;        х₁ * х₂ = q;

По условию задачи:

х₁ + х₂ = 2;

х₁ * х₂ = -48;

х₁ = 8;      х₂ = -6;

Проверка:

8 - 6 = 2;       8 * (-6) = -48, верно.

4,8(100 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ