Насколько я понял :
-x < 4. => x > - 4. = > x > - 4
2x + 6 > 0 => 2x > - 6 = > x > - 3
Объяснение:
Разложим на множители выражение в числителе и знаменателе.
\begin{gathered}y=\frac{24-12x}{2x-x^2}\\y=\frac{-12(x-2)}{-x(x-2)}\\\left \{ {{y=\frac{12}{x} } \atop {x\neq 2}} \right.\end{gathered}
y=
2x−x
2
24−12x
y=
−x(x−2)
−12(x−2)
{
x
=2
y=
x
12
Это гипербола, которая лежит в 1 и 3 четверти и имеет асимптоты, которыми являются оси координат.
Отметим 2 точки, которые принадлежат этой функции на координатной плоскости для более точно построения.
x=12 --> y=1; (12;1)
x=1 --> y=12; (1;12)
И проведём через них нашу гиперболу.
Случайная величина Х - число блоков, вышедших из строя в течение
гарантийного срока, может принимать значения 0,1,2,3
Закон распределения биномиальный, т. к. испытания удовлетворяют
схеме Бернулли, m=0,1,2,3
Считаешь вероятности по формуле:
Р (Х=m)=C(n,m)*p^m*(q)^(n-m), где
p=0.3,q=1-0.3=0.7,n=3
C(n,m)=n!/(m!*(n-m)!) - сочетания
Р (3,0)=Р (Х=0)=(q^3)=0.343
Р (3,1)=Р (Х=1)=3*p*(q^2)=3*0.3*0.7^2=0.441
Р (3,2)=Р (Х=2)=C(3,2)*(p^2)*q= 3*(0.3^2)*0.7=0.189
Р (3,3)=Р (Х=0)=(p^3)=0.027
Дальше проверяешь
0,343+ 0,441+ 0,189+ 0,027=1
нарисуешь таблицу распределения,
где первая строка — Xi = 0, 1, 2, 3
вторая — соответствующие значения вероятности Pi
Матожидание при биномиальном распределении
МО= nр =0,3*3=0,9
Дисперсия при биномиальном распределении
D(X)=npq=3*0,3*0,7=0,63
Отсюда среднеквадратическое отклонение находишь.
х≥-4
2х>-6
x>-3
ответ: [-4; +∞)