Сторона первого квадрата на 3 см меньше стороны второго квадрата, а площадь второго на 21 см² меньше площади первого. Найдите периметры этих квадратов.Скорее всего площадь 1го меньше площади 2го. Так? Тогда решение такое: ( ^ - степень) Х = сторона 1го квадрата(Х+3) - сторона 2го квадрата Х^2 - площадь 1го(х+3)^2 - площадь 2го (х+3)^2 - x^2 = 21x^2 + 6x + 9 - x^2 = 216x = 30x=5 - сторона 1го квадрата ( периметр = 4 * 5 = 20 см)5+3 = 8 = сторона 2го (периметр = 4 * 8 =32 см)Наверно, имеется в виду, что площадь второго квадрата на 21 см в кв. БОЛЬШЕ площади первого? Если так, то сторону первого квадрата можно принять за х-3. Сторона второго квадрата - х. Известно, что площадь равна произведению одной стороны на другую. Тогда площадь первого (х-3) в квадрате, а площадь второго х в квадрате. Если известно, что площадь второго на 21 см в кв. больше площади первого, то можно составить уравнение:(х-3) в квадрате= х в квадрате минус 21И решить!
(2х-3)^3 = 1-7 (5x +2)^2
8x^3-3*4x*-3*+3*2x*9+27=1-7{25x^2+2*5x*2+4]
8x^3+36x+54x+27=1-175x^2-70x-28
8x^3+36x+54x+27-1+175x^2+70+28=0
8x^3+175x^2+90x+124=0