М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
полина1938
полина1938
29.04.2022 15:05 •  Алгебра

На рисунке изображён график функции у=f( в5 надо !

👇
Ответ:
nyarokhno
nyarokhno
29.04.2022

Объяснение:

f'(x_0)=tg a

a - угол альфа между наклонной к графику функции и положительным направлением оси ох.

"корявый" оранжевый прямоугольный треугольник. противолежащий катет = 4, прилежащий катет =2

tg \alpha = \frac{4}{2}

tg \alpha = 2

=> f'(x_0)=2


На рисунке изображён график функции у=f( в5 надо !
4,4(94 оценок)
Открыть все ответы
Ответ:
christihhh75
christihhh75
29.04.2022

Объяснение:

Множество A содержится во множестве B (множество B включает множество A), если каждый элемент A есть элемент В:

A \subset B :\Leftrightarrow x \in A \Rightarrow x \in B

Говорят, что множество А содержится в множестве В или множество Аявляется подмножеством множества В ( в этом случае пишут А В ), если каждый элемент множества А одновременно является элементом множества В . Эта зависимость между множествами называется включением. Для любого множества А имеют место включения: ØА и А А

В этом случае A называется подмножеством B, B — надмножеством A. Если , то A называется собственным подмножеством В. Заметим, что \forall M \quad M \subset M,

По определению \forall M \quad \varnothing \subset M ,

Два множества называются равными, если они являются подмножествами друг друга

A = B :\Leftrightarrow A \subset B \land B \subset A

Операции над множествами

Пересечение.

A\cap B := \left\{x| x\in A\land x\in B\right\}

Объединение.

A\cup B := \left\{x| x \in A \lor x \in B\right\}

Свойства.

1.Операция объединения множеств коммутативна

2.Операция объединения множеств транзитивна

3. Пустое множество X является нейтральным элементом операции объединения множеств

Примеры:

1. Пусть A = {1,2,3,4},B = {3,4,5,6,7}. Тогда

2. А={2,4,6,8,10}, В = {3,6,9,12}. Найдём объединение и пересечение этих множеств:

{2,4,6,8, 10,3,6,9,12}, = {6}.

3. Множество детей является подмножеством всего населения

4. Пересечением множества целых чисел с множеством положительных чисел является множество натуральных чисел.

5. Объединением множества рациональных чисел с множеством иррациональных чисел является множество положительных чисел.

6.Нуль является дополнением множества натуральных чисел относительно множества неотрицательных целых чисел.

Диаграммы Венна (Venn diagrams) — общее название целого ряда методов визуализации и графической иллюстрации, широко используемых в различных областях науки и математики: теория множеств, собственно «диаграмма Венна» показывает все возможные отношения между множествами или событиями из некоторого семейства; разновидностями диаграмм Венна служат: диаграммы Эйлера,

Диаграмма Венна четырёх множеств.

Собственно «диаграмма Венна» показывает все возможные отношения между множествами или событиями из некоторого семейства. Обычная диаграмма Венна имеет три множества. Сам Венн пытался найти изящный с симметричными фигурами, представляющий на диаграмме большее число множеств, но он смог это сделать только для четырех множеств (см. рисунок справа), используя эллипсы.

Диаграммы Эйлера

Диаграммы Эйлера аналогичны диаграммам Венна.Диаграммы Эйлера можно использовать, для того, чтобы оценивать правдоподобность теоретико-множественных тождеств.

Задача 1. В классе 30 человек, каждый из которых поёт или танцует. Известно, что поют 17 человек, а танцевать умеют 19 человек. Сколько человек поёт и танцует одновременно?

Решение: Сначала заметим, что из 30 человек не умеют петь 30 - 17 = 13 человек.

Все они умеют танцевать, т.к. по условию каждый ученик класса поёт или танцует. Всего умеют танцевать 19 человек, из них 13 не умеют петь, значит, танцевать и петь одновременно умеют 19-13 = 6 человек.

Задачи на пересечение и объединение множеств.

Даны множества А = {3,5, 0, 11, 12, 19}, В = {2,4, 8, 12, 18,0}.

Найдите множества AU В,

Составьте не менее семи слов, буквы которых образуют подмножества множества

А -{к,а,р,у,с,е,л,ь}.

Пусть A - это множество натуральных чисел, делящихся на 2, а В - множество натуральных чисел, делящихся на 4. Какой вывод можно сделать относительно данных множеств?

На фирме работают 67 человек. Из них 47 знают английский язык, 35 - немецкий язык, а 23 - оба языка. Сколько человек фирмы не знают ни английского, ни немецкого языков?

Из 40 учащихся нашего класса 32 любят молоко, 21 - ли­монад, а 15 - и молоко, и лимонад. Сколько ребят в нашем классе не любят ни молоко, ни лимонад?

12 моих одноклассников любят читать детективы, 18 -фантастику, трое с удовольствием читают и то, и другое, а один вообще ничего не читает. Сколько учеников в нашем классе?

Из тех 18 моих одноклассников, которые любят смотреть триллеры, только 12 не прочь посмотреть и мультфильмы. Сколько моих одноклассников смотрят одни «мультики», если всего в на­шем классе 25 учеников, каждый из которых любит смотреть или триллеры, или мультфильмы, или и то и другое?

Из 29 мальчишек нашего двора только двое не занимают­ся спортом, а остальные посещают футбольную или теннисную секции, а то и обе. Футболом занимается 17 мальчишек, а тенни­сом - 19. Сколько футболистов играет в теннис? Сколько тенниси­стов играет в футбол?

65 % бабушкиных кроликов любят морковку, 10 % любят и морковку, и капусту. Сколько процентов кроликов не прочь по­лакомиться капустой?

В одном классе 25 учеников. Из них 7 любят груши, 11 -черешню. Двое любят груши и черешню; 6 - груши и яблоки; 5 -яблоки и черешню. Но есть в классе два ученика, которые любят все и четверо таких, что не любят фруктов вообще. Сколько учени­ков этого класса любят яблоки?

4,6(74 оценок)
Ответ:
duyquhuseynli
duyquhuseynli
29.04.2022

 

 

 

 

 

 

 

 

2000

 

 

 

 

Миньков С. Л. Excel: Лабораторный практикум. – Томск: ТУСУР, 2000. –109 с.

 

 

Лабораторный практикум предназначен для изучения электронных таблиц Excel – пакета прикладных программ, широко применяющегося для автоматизации операций обработки данных при решении различных экономических задач.

В 12 лабораторных работах последовательно рассматриваются следующие темы: заполнение таблиц, визуализация табличной информации, обработка статистических данных, составление сводных и отчетных ведомостей, применение формул финансовой математики, решение линейных и нелинейных уравнений и систем, решение дифференциальных уравнений, решение оптимизационных задач.

Практикум рассчитан на студентов очных и заочных отделений вузов, изучающих дисциплины блока «Информатика», а также аспирантов и слушателей факультетов повышения квалификации экономических специальностей. Возможно использование в дистанционном обучении по специальности  «Прикладная информатика (в экономике)».

4,4(28 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ