Выражение содержит дробь,то знаменатель не равен 0 у=(2х-5)/(х+1)⇒х≠-1 D(f)∈(-∞;-1) U (-1;∞) Если выражение содержит радикал четной степени, то подкоренное выражение может быть только положительным или равняться 0. f(x)=√(5x-7)⇒5x-7≥0⇒x≥1,4⇒D(f)∈[1,4;∞) Если выражение содержит логарифмическую функцию,то выражение стоящее под знаком логарифма всегда должно быть только положительным ,основание больше 0 и не равняться 1 f(x)=log(2)(5-x)⇒5-х>0⇒x<5⇒D(f)∈(-∞;5) f(x)=log(x)2 D(f)∈(0;1) U (1;∞) Для f(x)=tgx D(f)∈(-π/2+πn;π/2+πn,n∈z) Для f(x)=ctgx D(f)∈(πn;π+πn,n∈z) В остальном D(f)∈(-∞;∞)
Объяснение:
lgx^2/12=1/3-1/4*lgx
lgx^2=4-3lgx
пусть lgx=t ,тогда
t^2=4-3t
t^2+3t-4=0
D=9+16=25 √25=5
t1=-3-5/2=-4
t2=3-5/2=1
Проверка:
lgx=-4 lgx=1
x=1/10000=0,0001 x=10
произведение:0,0001*10=0,01