ax² + bx + c = 0 - квадратное уравнение (a ≠ 0), называется неполным, если b = 0, или c = 0, или оба сразу (b = 0 и c = 0). Разберем все эти случаи.
1) b = 0 и c ≠ 0
ax² + c = 0
ax² = -c
x² = -c / a
x² ≥ 0, поэтому для того, чтобы уравнение не имело корней достаточно -c / a < 0; c / a > 0 - получили ответ на первый вопрос
2) b ≠ 0; c = 0
ax² + bx = 0
x·(ax + b) = 0
x₁ = 0; x₂ = -b / a
То есть корни будут всегда, и мы получили ответ на второй вопрос задачи:
(при b ≠ 0; c = 0; Уравнение ax² + bx = 0 имеет 2 корня, один из которых 0)
3) b = 0 и c = 0
ax² = 0
x = 0, то есть всегда корнем будет 0
Объяснение:
16(x^2 - 4x + 4) - 64 - 9(y^2 + 6y + 9) + 81 = 161
16(x - 2)^2 - 9(y + 3)^2 = 16
(x - 2)^2 - (y + 3)^2 / (16/9) = 1
Это гипербола с центром A(2; -3) и полуосями a = 1; b = √(16/9) = 4/3
2) y = cos(x + y)
y' = -sin(x + y)*(1 + y') = -sin(x + y) - y'*sin(x + y)
y' + y'*sin(x + y) = -sin(x + y)
y' = - sin(x+y) / (1 + sin(x+y))
3) (1+x^2) dy - 2xy dx = 0
(1+x^2) dy = 2xy dx
dy/y = 2x dx / (1+x^2)
Интегрируем обе части
ln |y| = ln |1+x^2| + ln C
y = C(1 + x^2)
Решаем задачу Коши.
y(-1) = C(1 + (-1)^2) = 2C = 4
C = 2
y = 2(1 + x^2)