Заметим ,что наименьшие значения функций:
2^(x-3) +4>4
5*|tg(x)|+3*|ctg(x)|>=2√15 (из соображений полного квадрата и положительности каждого из членов |tg(x)|*|ctg(x)|=1)
Рассмотрим случай когда : a<-2√15
В этом случае числитель будет отрицателен при любом x:
a-(2^(x-3) +4)<0
Знаменатель же ,будет положителен не всегда, тк при каком нибудь x обязательно найдется значение 5*|tg(x)|+3*|ctg(x)|>a ,тк оно имеет область значений от 2√15 до бесконечности) . То есть в зависимости от x, может быть как и положителен так и отрицателен. Вывод: при a<-2√15 будут существовать решения неравенства.
Рассмотрим случай когда: a>4
Тут ситуация иная:
Знаменатель тут всегда положителен,а вот числитель не всегда отрицателен,то есть решения так же будут существовать .
Наконец рассмотрим случай когда:
-2√15<=a<=4
В этом случае числитель всегда отрицателен (при любом x), а знаменатель же наоборот будет неотрицателен. Таким образом только на этом интервале неравенство не будет иметь решения не для какого x. Тк отношение числителя и знаменателя всегда будет отрицательным. P.S Не у кого тут нет вопросов почему строгое неравенство для -2√15(знаменателю быть равным нулю не запрещается,тк наша цель отсутствие решений). Почему же строгое и для 4, а дело все в том ,что: 2^(x-3) +4≠4 , а только стремится к нему при стремлении x к бесконечности,поэтому опасаться за равенство нулю числителя не стоит.
Таким образом
ответ: a∈[-2√15;4]
Получаем квадратное уравнение относительно
cosx=t
Это уравнение имеет хотя бы один корень, если D ≥0
D=64+16(7+3a)=16(11+3a)
D≥0⇒ 11+3a≥0⇒ a≥ -11/3
t₁=1- (√(11+3а))/2 или t₂=1+ (√(11+3а))/2
Обратная замена приводит к уравнениям вида cos=t₁ или cosx=t₂
Чтобы эти уравнения имели хотя бы один корень, необходимо, что бы
-1 ≤ t₁ ≤1 или -1 ≤ t₂ ≤1
Решаем неравенства:
-1 ≤1+ (√(11+3а))/2 ≤1
-2≤√(11+3а))/2≤0
-4≤√(11+3а)≤0
Решением неравенства является
11+3a=0
a=-11/3
t₁=t₂=1/2
cosx=1/2
x=±(π/3)+2πn, n∈Z
Неравенство
-1 ≤1- (√(11+3а))/2 ≤1
также приводит к ответу a=-11/3
О т в е т. При а=-11/3
x=±(π/3)+2πn, n∈Z