Объяснение:
Решим задачу через геометрическое определение вероятности.
Обозначим за х и у время прихода пассажиров:
В прямоугольной системе координат этому условию удовлетворяют точки, лежащие внутри квадрата. Пассажиры встретятся, если между моментами их прихода пройдет не более 2 минут, то есть:
Что равносильно следующей системе:
На графике такая область выглядит следующим образом (см. рисунок).
Тогда вероятность встречи равна отношению площади закрашенной области к площади всего квадрата.
Площадь закрашенной области равна разности площади квадрата и двух прямоугольных треугольников с катетами 10-2=8 .
Тогда:
3 или 4 слагаемых с минусами.
Объяснение:
Я уже решал эту задачу.
Мы можем поставить 1, 2 или 3 минуса.
Если поставить один или три минуса, то получится:
(a - b + c + d)^2 = ((a+c+d) - b)^2 = (a+c+d)^2 - 2b(a+c+d) + b^2
Или, с тремя минусами:
(a - b - c - d)^2 = (a - (b+c+d))^2 = a^2 - 2a(b+c+d) + (b+c+d)^2
В обоих случаях получается три слагаемых с минусами.
Если же поставить два минуса, то получится:
(a + b - c - d)^2 = ((a+b) - (c+d))^2 = (a+b)^2 - 2(a+b)(c+d) + (c+d)^2 =
= (a+b)^2 - 2(ac+bc+ad+bd) + (c+d)^2
Здесь получается 4 слагаемых с минусом.