1) log5 (3x+1) > 2
3x+1 > 0; 3x > -1; x > -1/3
log5 (3x+1) > log5 5^2
3x+1 > 25
3x >24
x > 8
2) lg (3х^2 +12х+19)- lg(3х+4)=1
3х^2 +12х+19 > 0 - выражение >0 при любом х
3х+4 > 0; 3x > -4; x > -4/3
lg (3х^2 +12х+19)/(3х+4) = lg 10
(3х^2 +12х+19)/(3х+4) = 10
(3х^2 +12х+19)/(3х+4) - 10 = 0
(3х^2 +12х+19 - 30x - 40)/(3х+4) = 0
3х^2 - 18x - 21 = 0
x^2 - 6x - 7 = 0 x = -1 x = 7
3) log5 (х^2+8) - log5 (х+1) = 3log5 2
х^2+8 > 0 - выражение больше 0 при любом х
х+1 > 0; x > -1
log5 (x^2 + 8)/(x+1) = log5 2^3
(x^2 + 8)/(x+1) = 8
(x^2 + 8 - 8x - 8)/(x+1) = 0
x^2 - 8x = 0 x(x - 8) = 0 x = 0 x = 8
4) (0,2)^(4-х)=3
log0,2 (3) = 4 - x
x = 4 - log0,2 (3)
5) 3^(2-3х)=8
log3 (8)= 2-3x
3x = 2 - log3 (8)
x = 2/3 - [log3 (8)]/3
log по основанию 1/6 (10-x)+log по основанию 1/6 (x-3) больше или равно -1
ОДЗ: 10-x больше 0, x-3 больше 0
x меньше 10, x больше 3
log по основанию 1/6 ((10-x)(x-3)) больше или равно log по основанию 1/6 6
(10-x)(x-3) больше или равно 6
10x-30-x^2+3x-6 больше или равно 0
-x^2+13x-36 больше или равно 0
D=25
x(1)=4
x(2)=9
Смотрим знаки на прямой и получаем решение данного квадратного неравенства (- бесконечности: 4] ; [9: до + бесконечности)
Объединяем ОДЗ и решение и получаем: (3; 4]; [9;10)
ответ: (3; 4]; [9;10)