Пусть х - первое число, у - второе число.Получаем систему уравнений.х-в = 61/х + 1/у = 7/20х-у = 6у•1/(у•х) + х•1(а•у) = 7/20(у+х)/ху = 7/20х = 6уув+х = 7ху/20Подставим значение а из первого уравнение во второе:у + 6+у = 7(6+у) • у/2020•(2у + 6) = 7у(6+у) 40у + 120 = 42у + 7у^27у^2 + 42у- 40у - 120 = 07у^2 + 2у - 120 = 0D =2^2 -4•7•(-120) = 4 + 3360 = 3364√D = √3364 = 58у1 = (-2 + 58)/(2•7) = 56/14 = 4у2 = (-2 - 58)/(2•7) = - 60/14= -30/7 = - 4 2/7х = 6 + ху1 = 6 + 4х1 = 10х2 = 6 - 4 2/7 = 1 5/7ответ: 10 и 4 или 1 5/7 и - 4 2/7
Відповідь:
Решение: Пусть, случайная величина X – число выбранных красных карандашей. Из условия видно, что она может принимать значения i=0,1,2,3.
Общее число выбора 3 карандашей из 7,определяется числом сочетаний n=C37
.
Число выбора 3 карандашей, среди которых i красных карандашей и 4-i не красных определяется произведением числа выбора i красных карандашей из 4 красных Ci4
на число выбора 4-i некрасных карандашей из 7 карандашей C4−i7
,т.е.
m=Ci4×C4−i7
По классическому определению вероятности получаем,
P(X=i)=mn=Ci4×C4−i7C37(i=0,1,2,3).
C04=1;C14=4;C24=4×32=6;C34=C14=4;C47=C37=7×6×51×2×3=35;C27=7×61×2=21;C17=7,
получим:
P(X=0)=C04×C47C37=1×3535=1;P(X=1)=C14×C37C37=4×3535=4;P(X=2)=C24×C27C37=6×2135=3,6;P(X=3)=C34×C17C37=4×735=0,8.
Пояснення:
P(0≤x≤2)=0,029+0,343+0,514=0,886.
То есть это по сути вероятность того,что из выбранных карандашей будет до 2 красных.