Найдем точку пересечения функции x²-2x+3 с осью х x²-2x+3=0 D=2²-4*3=4-12=-8 Корней нет. Следовательно, с осью х не пересекается Ищем точку пересечения с осью у х=0 y=0²+2*0+3=3 (0;3) - искомая точка Находим производную y'=2x-2 y'(x₀)=2*0-2=-2 Уравнение касательной общем виде y = f(x₀) + f '(x₀)(x – x₀)) y=3-2(x-0) y=3-2x ответ: y=-2x+3 (наверно, это ответ С, там опечатка)
у=1/2x^2 - 2x + 6/7 y'=x-2 x-2=0 x=2 ответ: 2 (D)
f (x) = x+1/x-1 проведенной в точке М (2;3). f (x) = x+x⁻¹-1 f '(x) = 1-x⁻² x₀=2 f '(2) = 1-2⁻²=1-1/4=3/4=0.75 f (2)=2+1/2-1=3/2=1.5 Уравнение касательной общем виде y = f(x₀) + f '(x₀)(x – x₀)) y=1.5+0.75(x-2) y=1.5+0.75x-1.5 y=0.75x ответ: y=0.75x (вообще ничего похожего нет!) Это потому что т.М не принадлежит данной кривой - ее координаты не удовлетворяют данному уравнению
Наверно, я не так условие понял. Ну-ка, попробуем по-другому f (x) = (x+1)/(x-1) проведенной в точке М (2;3). x₀=2 f (x₀) = (2+1)/(2-1)=3 (Да, теперь подходит) f '(x) = [(x+1)'(x-1)-(x+1)(x-1)']/(x-1)²=(x-1-(x+1))/(x-1)²=-2/(x-1)² f '(2)=-2/(2-1)²=-2 Уравнение касательной общем виде y = f(x₀) + f '(x₀)(x – x₀)) y=3-2(x-2) y=3-2x+4 y=7-2x ответ: y=7-2x (все-равно, нет такого ответа)
Пусть через х минут после запуска третьего станка настал тот момент, о котором говорится в условии - "каждый станок выполнил одну и ту же часть задания". Тогда второй станок работал уже (х+35) минут, а первый - (х+35+20)=(х+55) минут.
Пусть через у минут после наступления вышеупомянутого момента третий станок завершил работу. Тогда первый станок завершил работу через (y+88) минут. Предположим, что второй станок завершил работу через (у+а) минут, где а - искомое время.
Тогда можно составить таблицу, в которой первый, второй и третий столбец соответствуют станкам, первая строка - времени до наступления "момента", вторая строка - после наступления "момента".
Так как времена в первой строке соответствуют одинаковым работам, и времена во второй строке соответствуют одинаковым работам, то их можно считать пропорциональными:
+ - +
________[- 2]_________(- 1)_________
////////////////// /////////////////////
ответ : x ∈ (- ∞ ; -2] ∪ (- 1 ; + ∞)