Функция скорости - первая производная от пути (только прямолинейного) по времени v (t) = s'(t) =6 + 2*18*t - 3*3*t^2 = -3t^2 + 36t +6 Остается исследовать v(t) на максимумы Это обычная квадратичная функция вида ax^2+bx+c, при а < 0 функция имеет единственный максимум - это вершина параболы, координата х вершины параболы x0 = -b/(2a)
Таким образом для нашей v(t) вершина будет в точке t0 = -36/(2*(-3)) = 6 Это момент времени, когда скорость максимальна, ну а само значение скорости vmax = v(6) = -3 * 36 + 36 * 6 + 6 = 36(-3+6) + 6 = 114
ответ 114, видимо м/c, в условии не указана размерность ))
ответ: приложено
Объяснение: