Y(x)=x²+4, х₀=1, k=4 угловой коэффициент касательной к функции равен значению производной функции в точке касания, т.е. k=y'(x₀) 1) найдем производную: y'(x)=(x²+4)'=2x k=y'(x₀)=y'(1)=2*1=2 - угловой коэффициент касательной к графику функции в точке с абсциссой x₀=1 2) теперь известен угловой коэффициент k=4, но неизвестна точка касания x₀, т.е. y'(x₀)=k 2*x₀=4 x₀=2 чтобы найти ординату точки, подставим x₀ в функцию y(x): y₀=y(x₀)=2²+4=4+4=8 (2;4) - координаты точки, в которой угловой коэффициент касания равен k=4 3) уравнение касательной в общем виде: f(x)=y(x₀)+y'(x₀)*(x-x₀) x₀=1, y'(x₀)=2 - найдено выше под 1) y(x₀)=1²+4=5 подставляем найденные значения в общий вид: f(x)=5+2(x-1)=5+2x-2=2x+3 - уравнение касательной к графику функции в точке с абсциссой x₀=1
Решение системы уравнений (5; 8)
Объяснение:
Решить систему уравнений методом сложения:
(х+3)/2 - (у-2)/3 =2
(х-1)/4 + (у+1)/3 =4
Умножить первое уравнение на 6, второе на 12, чтобы избавиться от дроби:
3(х+3)-2(у-2)=12
3(х-1)+4(у+1)=48
Раскрыть скобки:
3х+9-2у+4=12
3х-3+4у+4=48
Привести подобные члены:
3х-2у= -1
3х+4у=47
Умножить первое уравнение на -1, чтобы применить метод сложения:
-3х+2у=1
3х+4у=47
Складываем уравнения:
-3х+3х+2у+4у=1+47
6у=48
у=8
Теперь подставляем значение у в любое из двух уравнений системы и вычисляем х:
3х-2у= -1
3х= -1+2у
3х= -1+2*8
3х=15
х=5
Решение системы уравнений (5; 8)