Допустим в банк вложили Х рублей под 10% годовых .Через год насчету станет 1,1x руб. Если бы Пётр ничего не снимал со счёта, то через год там оказалось бы 1,1²x руб, а спустя три года оказалось бы 1,1³x руб . Но так как он снял через год n рублей , то на счету стала сумма 1,1x - n , ещё через год (1,1x - n) * 1,1. Через год Пётр снова кладёт на счёт 100 000 рублей и на счёте оказывается сумма (1,1x - n) * 1,1 + 100 000 . Через три года на счету [(1,1x - n) * 1,1 + 100 000] * 1,1 = 1,1³x - n * 1,1² + 100 000 * 1,1 = = 1,1³x - n * 1,1² +110 000 Сумма 1,1³x больше суммы 1,1³x - n * 1,1² + 110 000 на 4950 1,1³x - 11³ x + n * 1,1² - 110 000 = 4950 n * 1,1² = 114 950 n = 95 000 Пётр снял 95 000 рублей
A_n=6+8(n-1)=b_k=2+3(k-1); 8n-3k=1. Подбираем частное решение n=2; k=5 (лень делать "по науке", если решение элементарно угадывается); a_2=b_5=14. Перепишем уравнение в виде 8(n-2)-3(k-5)=0⇒n - 2 делится на 3, то есть n - 2=3m⇒8·3m=3(k-5)⇒k - 5=8m. Поэтому общее решение нашего уравнение имеет вид n=2+3m; k=5+8m - члены наших прогрессий с такими номерами совпадают. Находим все такие k: 1≤k ≤40 k=5; 13;21;29;37 (при этом m=0; 1; 2; 3; 4); n=2; 5; 8; 11; 14 b_5=a_2=14; b_13=a_5=38 (на 24 больше); b_21=a_8=62 (еще на 24 больше); b_29=a_11=86; b_37=a_14=110
Через три года на счету
[(1,1x - n) * 1,1 + 100 000] * 1,1 = 1,1³x - n * 1,1² + 100 000 * 1,1 =
= 1,1³x - n * 1,1² +110 000
Сумма 1,1³x больше суммы 1,1³x - n * 1,1² + 110 000 на 4950
1,1³x - 11³ x + n * 1,1² - 110 000 = 4950
n * 1,1² = 114 950
n = 95 000
Пётр снял 95 000 рублей