По условию:
1 собака + 2 кошки => 60 минут
4 собака + 2 кошки => 20 минут
Если в первом случае увеличить количество собак и кошек в 3 раза, то им всем вместе потребуется в 3 раза меньше времени:
3 собаки + 6 кошек => 20 минут
Теперь у нас есть две ситуации, занимающие одно и то же время: 4 собака + 2 кошки едят сосиски за 20 минут и 3 собаки + 6 кошек едят сосиски за 20 минут. Приравняем:
4 собака + 2 кошки = 3 собаки + 6 кошек
1 собака = 4 кошки
То есть, одна собака может заменить 4 кошки.
Видоизменим первое условие, увеличив число животных в два раза и сократив время в два раза:
2 собаки + 4 кошки => 30 минут
Подставим соотношение "1 собака = 4 кошки":
2 собаки + 1 собака => 30 минут
3 собака => 30 минут
Но если собак будет в три раза меньше, то времени будет затрачено в три раза больше:
1 собака => 90 минут
ответ: 90 минут
1) ответ: 5) -1/32x(степень 40) y (степень 45)
Объяснение:
1)Используем свойства степени (-1/2)(степень 5) * (x(степень 8))(степень 5)*(у(степень 9))(степень 5). (Чтобы возвести произведение в степень, возведите каждый множитель в эту степень)
2)Сократить дробь
-1/32*(x(степень 8))(степень 5)*(y(степень 9))(степень 5). (Чтобы возвести дробь в степень, нужно возвести в эту степень числитель и знаменатель.)
3) Упрощаем выражение путём умножения показателей степеней
-1/32x(степень 40) *y (степень 45). (Просто перемножаем степени - 8*5=40 и 9*5=45)
1) ответ: 1) -216m (степень 9) n (степень 9)
Объяснение
1)Возводим число -6 в третью степень. (-216)
2)При возведении степени в степень - степени перемножаются. (3*3=9, поэтому и в девятых степенях)
3) ответ: 2) 49x (степень 18) y (степень 20)
Объяснение: Смотреть второе.
Ветви направлены вверх, т. к. x > 0