Решение системы уравнений а=3
у=0
Объяснение:
(у+1)/(2а-4)=1/2
(5а+у)/(3а+6)=1
(у+1)/(2а-4)=0,5
(5а+у)/(3а+6)=1
Умножить знаменатели дробей на левую часть, чтобы избавиться от дробного выражения:
у+1=0,5(2а-4)
5а+у=3а+6
у+1=а-2
5а+у=3а+6
Перенесём неизвестные в левую часть уравнений, известные в правую:
у-а= -3
2а+у=6
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе нужно первое уравнение умножить на -1:
-у+а=3
2а+у=6
Складываем уравнения:
-у+у+а+2а=3+6
3а=9
а=3
Теперь значение а подставляем в любое из двух уравнений системы и вычисляем у:
у-а= -3
у= -3+а
у= -3+3
у=0
Решение системы уравнений а=3
у=0
1. q = -2.
2. 1;1/2;1/4 q = 1/2
1;3;9q = 3
2/3;1/2;3/8q = 3/4
√2; 1;√2/2q = 1/√2
3. заданная формула возможно неточно переписана или последовательность не геометрическая.
3*2n - 3 умножить на 2n или 3 возвести в степень 2n
4. q = 0,5
5. S = -0.25
6. b6 = 243.
7. 3-n,3-2n,3-3n,3-4n, 3n,3n+1,3n+2,3n+3 - єти последовательности не являются геометрическими прогрессиями
Объяснение:
1. Последовательность геометрическая т.к. а2 = а1 * q, а3 = а2 * q, где
q - одно и тоже число (знаменатель данной геометрической прогрессии)
q = а2 / а1 = -6 / 3 = -2.
4. Из формулы нахождения n-го члена геометрической прогрессии
q = а2 / а1 = 10/20 = 0,5.
5. q = а2 / а1 = -2/4 = -0,5
а5 = 4 * (-0,5)^4 = 0.25
a4 = 4 * (-0.5) ^3 = -0.5
6. b6 = b1 * q^5 = 243.
х^3(х+3)-(х+3)=0
(х+3)-(х^3-1)=0
х+3=0. х^3-1=0
х=-3. х^3=1
х=1