Решение 1) Проведём сечение через высоту и апофему пирамиды. Это сечение представляет из себя прямоугольный треугольник, гипотенуза которого равна апофеме l, катет, лежащий в основании будет являться радиусом вписанной в шестиугольник окружности r = a√3/2, где а = √3. Второй катет является высотой пирамиды h = 2. Найдём r = (√3*√3)/2 = 3/2 = 1,5 По теореме Пифагора находим апофему пирамиды: l = √(h² + r²) = √(4 + 1,5²) = √6,25 = 2,5 ответ: 2,5 2) По условию задачи, через 5 минут после начала опыта масса изотопа стала равна 120 мг. Значит значит время от начала момента будет (t -5) мин. Решим неравенство: 120 * 2^(-(t - 5)/12) ≤ 7,5 2^(-(t - 5)/12) ≤ 7,5/120 2^(-(t - 5)/12) ≤ 0,0625 2^(-(t - 5)/12) ≤ 2⁻⁴ -(t - 5) / 12 ≤ - 4 t - 5 ≤ 4*12 t ≤ 48 + 5 t ≤ 53 (мин) ответ: t ≤ 53 (мин)
Номер 1: 3^-3=-27 ответ Б Так как степень отрицательная, знак не поменяется. То есть минус останется минусом -3*(-3)*(-3)=-27
Номер2: Х^-5:х^3= х^-8
Когда делишь надо вычитать степени. Основание остаётся одинаковым, а степень -5-3= -8
Номер3: А) приводишь все к одинаковому основанию т.е 2: 8 это 2^3 у тебя ещё 8 в квадрате=> (2^3)^2 Раскрывая скобку надо 3 умножить на 2. Значит 2 в 6 степени
2^-14 такой и остаётся
4 это 2 в квадрате, там ещё -6 степень => (2^2)^-6 умножаешь степени= 2^-12
2^6*2^-14 ————— 2^-12
В знаменателе когда 2 числа умножаешь само основание 2 не изменяется, а степени надо прибавить т.е 6+(-14)= -8
2^-8 ——- 2^-12
Основание остаётся, степени вычитаются -8-(-12)=-8+12= 4
ответ: 2^4=16
Б) 9^2*3^-10 —————— 27^-3
Приводим к одинаковому основанию 3
9 это 3 в квадрате, там ещё и 2 степень а значит 3^4 3^-10 не трогаем 27^-3 это (3^3)-3= 3^-9 3^4*3^-10 ————— 3^-9
В знаменателе степени прибавляем 4+(-10)= -6
3^-6 –—— = 3^3 ( степени вычитаешь) 3^-9
3 в кубе это 27. ответ 27
Номер5: За скобки выносим б^3 В скобке остаётся b^3 (1-b^2)
Если дискриминант данного уравнения равен нулю . Для получения такого дискриминанта P = 6,928203230275509 .